zacdennis commited on
Commit
8fcb814
1 Parent(s): 5612dca

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 240.27 +/- 56.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3e24b231c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3e24b23250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3e24b232e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3e24b23370>", "_build": "<function ActorCriticPolicy._build at 0x7a3e24b23400>", "forward": "<function ActorCriticPolicy.forward at 0x7a3e24b23490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3e24b23520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3e24b235b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a3e24b23640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3e24b236d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3e24b23760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3e24b237f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a3e24b25a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690214087730087494, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGbczL0djwU//q9UPvwHuL7OxRa8xan6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCGucYqG1yMAWyUTUsBjAF0lEdAmsvPdVNpNHV9lChoBkdAcIqgRbr1NGgHTRoBaAhHQJrNVK7I1cd1fZQoaAZHQHCsPVqesgdoB0v8aAhHQJrPy0ngHeJ1fZQoaAZHQG/mVK5CngpoB00cAWgIR0Ca0U3wCr93dX2UKGgGR0Bw88d/8VHnaAdL/2gIR0Ca0qiNKh+OdX2UKGgGR0BxTFvVEuxsaAdNLwFoCEdAmtYe0ojOcHV9lChoBkdAbQOod+5OJ2gHS/poCEdAmtgOQZGayHV9lChoBkdAcnCOs1baAWgHTQsBaAhHQJrZ9VghKUV1fZQoaAZHQG/oHYYixFBoB00dAWgIR0Ca3Bt03fhudX2UKGgGR0BxMqgctGutaAdNBAFoCEdAmt9W6bvw3HV9lChoBkdANuvCMxXXAmgHS+VoCEdAmuCZIxxku3V9lChoBkdAcnpmnwXqJWgHTSgBaAhHQJriL4rSVnp1fZQoaAZHQDt/q3VkMCtoB0vPaAhHQJrjWlwcYIl1fZQoaAZHQEChsN2C/XZoB0vZaAhHQJrlo4R28qZ1fZQoaAZHQHGx14TsY2toB0v+aAhHQJrnDuYx+KF1fZQoaAZHQG/XghB7eEZoB00lAWgIR0Ca6K2ugYgrdX2UKGgGR0BtzjVjI7vHaAdNAwFoCEdAmuoX7Hhjv3V9lChoBkdAcLFWqtHQQmgHTSgBaAhHQJrs1UJfICF1fZQoaAZHQExNaakRBeJoB0vNaAhHQJrt8q9XcQB1fZQoaAZHQHAbz238XN1oB00sAWgIR0Ca74kB0ZFYdX2UKGgGR0BwwZqi48U3aAdL/GgIR0Ca8OFgUlAvdX2UKGgGR0ByO211GLDRaAdNfgFoCEdAmvQYGIKtxXV9lChoBkdAcZenxJ/XoWgHTTYBaAhHQJr1xK15Sm91fZQoaAZHQHBBuoDPnjhoB00MAWgIR0Ca9zehf0EpdX2UKGgGR0BxnhHavicYaAdNJAFoCEdAmvnuDvmYB3V9lChoBkdAcpw/Ue+23WgHTTIBaAhHQJr7lw0fozN1fZQoaAZHQG60fHPu5SZoB00IAWgIR0Ca/QcnmaH9dX2UKGgGR0ByOpLEk0JoaAdNOAFoCEdAmv65vcafjHV9lChoBkdAcGSV3EAHV2gHTRUBaAhHQJsBXSsr/bV1fZQoaAZHQHHvRtk4FRpoB000AWgIR0CbAvmsNlRQdX2UKGgGR0Buh/6VMVUNaAdNDAFoCEdAmwRnPu5SWXV9lChoBkdAb07aA4GUwGgHTRkBaAhHQJsHZaTwDvF1fZQoaAZHQC6433pOerdoB0vQaAhHQJsI7FERaox1fZQoaAZHQHCmMWoFV1hoB00aAWgIR0CbCuowVTJhdX2UKGgGR0BvwZIMBp6AaAdL9WgIR0CbDKcer+5wdX2UKGgGR0AgLUYsNDtxaAdL5GgIR0CbDlUi6g/UdX2UKGgGR0Bw0Fjtoi9qaAdNIQFoCEdAmxGR/ustCnV9lChoBkdAciEKArhBJWgHTVIBaAhHQJsTdK6Fuel1fZQoaAZHQHHduSntOVRoB00tAWgIR0CbFQpobn5jdX2UKGgGR0BwsqULUkOaaAdL+mgIR0CbF4qjrRjSdX2UKGgGR0BxQqwqy4WlaAdNKAFoCEdAmxkyxJNCaHV9lChoBkdAcV3MPBi1A2gHTRMBaAhHQJsapJTVDrt1fZQoaAZHQGvtFQ2uPmxoB0v7aAhHQJsb+ZZ0Syt1fZQoaAZHQHHpSt3fQ8hoB00uAmgIR0CbIB3PRiPRdX2UKGgGR0AyBiLEUCaJaAdLxmgIR0CbITdH2AXmdX2UKGgGR0Bw1R/Ue+23aAdNEwFoCEdAmyLCrcTJyXV9lChoBkdAbm9RXwLE1mgHTRMBaAhHQJslY+2VmjF1fZQoaAZHQHCKFB2OhkBoB0v5aAhHQJsmujFhodx1fZQoaAZHQG65YAjps41oB0vsaAhHQJsoBUwSJ0p1fZQoaAZHQHCuQaNuLrJoB0v9aAhHQJspZzcRDkV1fZQoaAZHQEkW2y9mHxloB0vPaAhHQJsrmtCAtnR1fZQoaAZHQHJHWdupCKJoB0v5aAhHQJss68nNPgx1fZQoaAZHQHEaKU3XI2hoB0v9aAhHQJsuT41xbSt1fZQoaAZHQDa8sd1dPcloB0vMaAhHQJsvbX+VC5V1fZQoaAZHQFQi/5tWMjxoB0vgaAhHQJsxtGNJe3R1fZQoaAZHQG7a7/Ot4iZoB03HAWgIR0CbNDdK/VRUdX2UKGgGR0Bw7bjaPCEYaAdNIgFoCEdAmzXLkn1FpnV9lChoBkdAcfy2JBPbf2gHTRUBaAhHQJs4i+xnnMd1fZQoaAZHQG6EWLYPGyZoB0vwaAhHQJs6WYmb9ZR1fZQoaAZHQG70PAGjbi9oB00MAWgIR0CbPEIBBAv+dX2UKGgGR0BxdsLWqcVhaAdNCwFoCEdAmz4tdJJ5FHV9lChoBkdAcK55UcXFcmgHTRkBaAhHQJtB2lZX+2p1fZQoaAZHQEjmV8CxNZhoB0u7aAhHQJtDLwhGH591fZQoaAZHQHAz4jfNzKdoB00GAWgIR0CbRJ2HtWuHdX2UKGgGR0BwtVT4tYjjaAdNFAFoCEdAm0YYd2gWanV9lChoBkdAclWU3GXHBGgHTQ4BaAhHQJtItw++ueV1fZQoaAZHQEigzByjpLVoB0vIaAhHQJtJx2ZAprl1fZQoaAZHQG4XXbVSXMRoB00kAWgIR0CbS2fCAMDwdX2UKGgGR0BARE/jbSJCaAdLzGgIR0CbTIJ53TuwdX2UKGgGR0BvB7dpItlJaAdNHwFoCEdAm04N+w1R+HV9lChoBkdAbvv6ol2NemgHTXQBaAhHQJtRONCJGfB1fZQoaAZHQHHqBXGOuJVoB01WAWgIR0CbUyjJdSl4dX2UKGgGR0BuxCOFQEZBaAdNIAFoCEdAm1SuhTOxB3V9lChoBkdAcE4UIcBEKGgHTRcBaAhHQJtXXG96C191fZQoaAZHQHCkPEOy3TdoB000AWgIR0CbWSRGc4HYdX2UKGgGR0BJ42APNFBqaAdL12gIR0CbWlTlT3qSdX2UKGgGR0Bvo8vqTr3TaAdNFQFoCEdAm1zvkili0HV9lChoBkdAV96cYqG1yGgHTegDaAhHQJtjlKK508x1fZQoaAZHQHC/qya/h2poB00yAWgIR0CbZUBHkLhKdX2UKGgGR0Bwb8B0ZFXraAdNCAFoCEdAm2a5gw482nV9lChoBkdAbT1yoXKr72gHTTsBaAhHQJtocQrc0tR1fZQoaAZHQERZG96C17ZoB0vOaAhHQJtquL61stV1fZQoaAZHQHD52+XZ5A1oB00xAWgIR0CbbPfI0ZWJdX2UKGgGR0Bx5Wab4Ju3aAdNFwFoCEdAm28LNfPX1HV9lChoBkdAcD/XbM5fdGgHTSYBaAhHQJtxG2rn1Wd1fZQoaAZHQHD/OnqFAVxoB001AWgIR0CbdREFnqVydX2UKGgGR0Bwt7aews5GaAdNEgFoCEdAm3aXEAHVw3V9lChoBkdAcMXVRk3CK2gHTQ4BaAhHQJt4FwOvt+l1fZQoaAZHQHHnd/FzdUNoB00KAWgIR0CberKQaJhwdX2UKGgGR0ByCNsl9jPOaAdNIQFoCEdAm3xJ9qk/KXV9lChoBkdAT6NpPAO8TWgHS8xoCEdAm31iqQzUJHV9lChoBkdAb9PiG34KyGgHS/poCEdAm37FeSjgynV9lChoBkdAcdHoM8YAKmgHTRIBaAhHQJuBZEF4cFR1fZQoaAZHQHGpfUaya/hoB00iAWgIR0CbgwNXo1UEdX2UKGgGR0Bxu/+fh/AkaAdNpQFoCEdAm4VQfdRBNXV9lChoBkdAcUe9FWn0kGgHTXEBaAhHQJuIf56+nIh1fZQoaAZHQHItYwudwvRoB0v6aAhHQJuJ6mpEQXh1fZQoaAZHQEDm3Td+G49oB0u0aAhHQJuLAKrq+rV1fZQoaAZHQHB++wC8vmJoB0v2aAhHQJuMXytmthd1fZQoaAZHQEvnwjt5UtJoB0u0aAhHQJuNXrGBFux1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0065debfd1ef64dfa8e81e0b4c92977f02a93c4ae0c3b392d6a667516d303764
3
+ size 146051
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3e24b231c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3e24b23250>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3e24b232e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3e24b23370>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a3e24b23400>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a3e24b23490>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3e24b23520>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3e24b235b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a3e24b23640>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3e24b236d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3e24b23760>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3e24b237f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a3e24b25a00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690214087730087494,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGbczL0djwU//q9UPvwHuL7OxRa8xan6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVIQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCGucYqG1yMAWyUTUsBjAF0lEdAmsvPdVNpNHV9lChoBkdAcIqgRbr1NGgHTRoBaAhHQJrNVK7I1cd1fZQoaAZHQHCsPVqesgdoB0v8aAhHQJrPy0ngHeJ1fZQoaAZHQG/mVK5CngpoB00cAWgIR0Ca0U3wCr93dX2UKGgGR0Bw88d/8VHnaAdL/2gIR0Ca0qiNKh+OdX2UKGgGR0BxTFvVEuxsaAdNLwFoCEdAmtYe0ojOcHV9lChoBkdAbQOod+5OJ2gHS/poCEdAmtgOQZGayHV9lChoBkdAcnCOs1baAWgHTQsBaAhHQJrZ9VghKUV1fZQoaAZHQG/oHYYixFBoB00dAWgIR0Ca3Bt03fhudX2UKGgGR0BxMqgctGutaAdNBAFoCEdAmt9W6bvw3HV9lChoBkdANuvCMxXXAmgHS+VoCEdAmuCZIxxku3V9lChoBkdAcnpmnwXqJWgHTSgBaAhHQJriL4rSVnp1fZQoaAZHQDt/q3VkMCtoB0vPaAhHQJrjWlwcYIl1fZQoaAZHQEChsN2C/XZoB0vZaAhHQJrlo4R28qZ1fZQoaAZHQHGx14TsY2toB0v+aAhHQJrnDuYx+KF1fZQoaAZHQG/XghB7eEZoB00lAWgIR0Ca6K2ugYgrdX2UKGgGR0BtzjVjI7vHaAdNAwFoCEdAmuoX7Hhjv3V9lChoBkdAcLFWqtHQQmgHTSgBaAhHQJrs1UJfICF1fZQoaAZHQExNaakRBeJoB0vNaAhHQJrt8q9XcQB1fZQoaAZHQHAbz238XN1oB00sAWgIR0Ca74kB0ZFYdX2UKGgGR0BwwZqi48U3aAdL/GgIR0Ca8OFgUlAvdX2UKGgGR0ByO211GLDRaAdNfgFoCEdAmvQYGIKtxXV9lChoBkdAcZenxJ/XoWgHTTYBaAhHQJr1xK15Sm91fZQoaAZHQHBBuoDPnjhoB00MAWgIR0Ca9zehf0EpdX2UKGgGR0BxnhHavicYaAdNJAFoCEdAmvnuDvmYB3V9lChoBkdAcpw/Ue+23WgHTTIBaAhHQJr7lw0fozN1fZQoaAZHQG60fHPu5SZoB00IAWgIR0Ca/QcnmaH9dX2UKGgGR0ByOpLEk0JoaAdNOAFoCEdAmv65vcafjHV9lChoBkdAcGSV3EAHV2gHTRUBaAhHQJsBXSsr/bV1fZQoaAZHQHHvRtk4FRpoB000AWgIR0CbAvmsNlRQdX2UKGgGR0Buh/6VMVUNaAdNDAFoCEdAmwRnPu5SWXV9lChoBkdAb07aA4GUwGgHTRkBaAhHQJsHZaTwDvF1fZQoaAZHQC6433pOerdoB0vQaAhHQJsI7FERaox1fZQoaAZHQHCmMWoFV1hoB00aAWgIR0CbCuowVTJhdX2UKGgGR0BvwZIMBp6AaAdL9WgIR0CbDKcer+5wdX2UKGgGR0AgLUYsNDtxaAdL5GgIR0CbDlUi6g/UdX2UKGgGR0Bw0Fjtoi9qaAdNIQFoCEdAmxGR/ustCnV9lChoBkdAciEKArhBJWgHTVIBaAhHQJsTdK6Fuel1fZQoaAZHQHHduSntOVRoB00tAWgIR0CbFQpobn5jdX2UKGgGR0BwsqULUkOaaAdL+mgIR0CbF4qjrRjSdX2UKGgGR0BxQqwqy4WlaAdNKAFoCEdAmxkyxJNCaHV9lChoBkdAcV3MPBi1A2gHTRMBaAhHQJsapJTVDrt1fZQoaAZHQGvtFQ2uPmxoB0v7aAhHQJsb+ZZ0Syt1fZQoaAZHQHHpSt3fQ8hoB00uAmgIR0CbIB3PRiPRdX2UKGgGR0AyBiLEUCaJaAdLxmgIR0CbITdH2AXmdX2UKGgGR0Bw1R/Ue+23aAdNEwFoCEdAmyLCrcTJyXV9lChoBkdAbm9RXwLE1mgHTRMBaAhHQJslY+2VmjF1fZQoaAZHQHCKFB2OhkBoB0v5aAhHQJsmujFhodx1fZQoaAZHQG65YAjps41oB0vsaAhHQJsoBUwSJ0p1fZQoaAZHQHCuQaNuLrJoB0v9aAhHQJspZzcRDkV1fZQoaAZHQEkW2y9mHxloB0vPaAhHQJsrmtCAtnR1fZQoaAZHQHJHWdupCKJoB0v5aAhHQJss68nNPgx1fZQoaAZHQHEaKU3XI2hoB0v9aAhHQJsuT41xbSt1fZQoaAZHQDa8sd1dPcloB0vMaAhHQJsvbX+VC5V1fZQoaAZHQFQi/5tWMjxoB0vgaAhHQJsxtGNJe3R1fZQoaAZHQG7a7/Ot4iZoB03HAWgIR0CbNDdK/VRUdX2UKGgGR0Bw7bjaPCEYaAdNIgFoCEdAmzXLkn1FpnV9lChoBkdAcfy2JBPbf2gHTRUBaAhHQJs4i+xnnMd1fZQoaAZHQG6EWLYPGyZoB0vwaAhHQJs6WYmb9ZR1fZQoaAZHQG70PAGjbi9oB00MAWgIR0CbPEIBBAv+dX2UKGgGR0BxdsLWqcVhaAdNCwFoCEdAmz4tdJJ5FHV9lChoBkdAcK55UcXFcmgHTRkBaAhHQJtB2lZX+2p1fZQoaAZHQEjmV8CxNZhoB0u7aAhHQJtDLwhGH591fZQoaAZHQHAz4jfNzKdoB00GAWgIR0CbRJ2HtWuHdX2UKGgGR0BwtVT4tYjjaAdNFAFoCEdAm0YYd2gWanV9lChoBkdAclWU3GXHBGgHTQ4BaAhHQJtItw++ueV1fZQoaAZHQEigzByjpLVoB0vIaAhHQJtJx2ZAprl1fZQoaAZHQG4XXbVSXMRoB00kAWgIR0CbS2fCAMDwdX2UKGgGR0BARE/jbSJCaAdLzGgIR0CbTIJ53TuwdX2UKGgGR0BvB7dpItlJaAdNHwFoCEdAm04N+w1R+HV9lChoBkdAbvv6ol2NemgHTXQBaAhHQJtRONCJGfB1fZQoaAZHQHHqBXGOuJVoB01WAWgIR0CbUyjJdSl4dX2UKGgGR0BuxCOFQEZBaAdNIAFoCEdAm1SuhTOxB3V9lChoBkdAcE4UIcBEKGgHTRcBaAhHQJtXXG96C191fZQoaAZHQHCkPEOy3TdoB000AWgIR0CbWSRGc4HYdX2UKGgGR0BJ42APNFBqaAdL12gIR0CbWlTlT3qSdX2UKGgGR0Bvo8vqTr3TaAdNFQFoCEdAm1zvkili0HV9lChoBkdAV96cYqG1yGgHTegDaAhHQJtjlKK508x1fZQoaAZHQHC/qya/h2poB00yAWgIR0CbZUBHkLhKdX2UKGgGR0Bwb8B0ZFXraAdNCAFoCEdAm2a5gw482nV9lChoBkdAbT1yoXKr72gHTTsBaAhHQJtocQrc0tR1fZQoaAZHQERZG96C17ZoB0vOaAhHQJtquL61stV1fZQoaAZHQHD52+XZ5A1oB00xAWgIR0CbbPfI0ZWJdX2UKGgGR0Bx5Wab4Ju3aAdNFwFoCEdAm28LNfPX1HV9lChoBkdAcD/XbM5fdGgHTSYBaAhHQJtxG2rn1Wd1fZQoaAZHQHD/OnqFAVxoB001AWgIR0CbdREFnqVydX2UKGgGR0Bwt7aews5GaAdNEgFoCEdAm3aXEAHVw3V9lChoBkdAcMXVRk3CK2gHTQ4BaAhHQJt4FwOvt+l1fZQoaAZHQHHnd/FzdUNoB00KAWgIR0CberKQaJhwdX2UKGgGR0ByCNsl9jPOaAdNIQFoCEdAm3xJ9qk/KXV9lChoBkdAT6NpPAO8TWgHS8xoCEdAm31iqQzUJHV9lChoBkdAb9PiG34KyGgHS/poCEdAm37FeSjgynV9lChoBkdAcdHoM8YAKmgHTRIBaAhHQJuBZEF4cFR1fZQoaAZHQHGpfUaya/hoB00iAWgIR0CbgwNXo1UEdX2UKGgGR0Bxu/+fh/AkaAdNpQFoCEdAm4VQfdRBNXV9lChoBkdAcUe9FWn0kGgHTXEBaAhHQJuIf56+nIh1fZQoaAZHQHItYwudwvRoB0v6aAhHQJuJ6mpEQXh1fZQoaAZHQEDm3Td+G49oB0u0aAhHQJuLAKrq+rV1fZQoaAZHQHB++wC8vmJoB0v2aAhHQJuMXytmthd1fZQoaAZHQEvnwjt5UtJoB0u0aAhHQJuNXrGBFux1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdc8fb83361323a9f6bc7e4678be85316e55cddc487faf60ff7b0cc7377f2d2f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eaef4fb26eb444b7265190f5b046168a54bf5f4be751c88c6251c946e7529f4
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (178 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 240.26524908960909, "std_reward": 56.666923900546095, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-24T16:29:55.021606"}