ppo-LunarLander-v2 / config.json
zach-lawless's picture
Upload PPO LunarLander-v2 trained agent
86fc4ec
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86240805e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8624080670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8624080700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8624080790>", "_build": "<function ActorCriticPolicy._build at 0x7f8624080820>", "forward": "<function ActorCriticPolicy.forward at 0x7f86240808b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8624080940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86240809d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8624080a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8624080af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8624080b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f862407d8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672851833956848773, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpeMT22PHC8ovYVvccAzju7Qq29e2/evQAAgD8AAIA/s91BvcP5NbqI2Mw6NVS4NVyDxLrr2PK5AACAPwAAgD8AWtY9D40AvOOAl7xwlY08/0ZevYbmbD0AAAAAAACAP9oVqj3kAZo9yFJPvRQrEr5F3qc6tHlLvQAAAAAAAAAADQWUPeHOlLqT3w43suAXMoBWFbs0TCa2AACAPwAAgD8zqi89SI+duivbZLl+S4a1vczjupYfhDgAAIA/AACAP4Azsz17oIS6Ng/rOs0dzre8Qw27Pq4BugAAgD8AAIA/GtYJPXteoroqCms6r5KnNUSz2LhrV4e5AACAPwAAgD9TGWY+2kMsP95C6D2bE4i+OYnePdgnUD0AAAAAAAAAAGb0VD2+P609hoNCvB86U76DjKE8YVMHvQAAAAAAAAAAvRSkPqF4Rj/wIU88vKqwvr/0tD5+0jC+AAAAAAAAAABmqrI9FECOup5SETuiO5+3zDzLutOgI7oAAAAAAACAP1qaEz4KDC4+TpoAviTDV77A+Ik8AClgvAAAAAAAAAAAjcYHPgoVL7vC1S+5BawvNv01VLwVWVQ4AACAPwAAgD/NEog9FM6UO3B0Hr0/dx2+h2F4PMrRlr0AAAAAAAAAABpPT703TqM/W9Tdvt6XGL8WNaU8TbC6vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILQWk/Q8NYkCUhpRSlIwBbJRN6AOMAXSUR0CRVOOaOPvKdX2UKGgGaAloD0MIP5EnSdffYECUhpRSlGgVTegDaBZHQJFXQbVBlc11fZQoaAZoCWgPQwiGHFvPEDdfQJSGlFKUaBVN6ANoFkdAkVsH5zo2XXV9lChoBmgJaA9DCIlBYOXQlmVAlIaUUpRoFU3oA2gWR0CRaFdC3PRidX2UKGgGaAloD0MIgC2vXG8jZkCUhpRSlGgVTegDaBZHQJFsXFId2gZ1fZQoaAZoCWgPQwi6FFeVvXFwQJSGlFKUaBVNVwJoFkdAkW9ZdGAkLXV9lChoBmgJaA9DCH78pUV9Vl9AlIaUUpRoFU3oA2gWR0CRb9eeFtbcdX2UKGgGaAloD0MIMj7MXrZeZECUhpRSlGgVTegDaBZHQJGFbGDL8rJ1fZQoaAZoCWgPQwgld9hE5udhQJSGlFKUaBVN6ANoFkdAkYcRVp9JBnV9lChoBmgJaA9DCN7GZkcqcWRAlIaUUpRoFU3oA2gWR0CRh6o8ZDRddX2UKGgGaAloD0MIAwmKH2P6YUCUhpRSlGgVTegDaBZHQJGHvlmvnr91fZQoaAZoCWgPQwj5vOKpRwBmQJSGlFKUaBVN6ANoFkdAkYhGgFotc3V9lChoBmgJaA9DCFAXKZSFwmZAlIaUUpRoFU3oA2gWR0CRite1KGtZdX2UKGgGaAloD0MIQ61p3vFDYkCUhpRSlGgVTegDaBZHQJGLT2saKk51fZQoaAZoCWgPQwgRje4gdl9lQJSGlFKUaBVN6ANoFkdAkYvz7di2D3V9lChoBmgJaA9DCElMUMO3UmdAlIaUUpRoFU3oA2gWR0CRoK1SOzY3dX2UKGgGaAloD0MI8lzfh4NKYkCUhpRSlGgVTegDaBZHQJGjD+yZ8a51fZQoaAZoCWgPQwjj3ZGxWkJiQJSGlFKUaBVN6ANoFkdAkaWcfeUILXV9lChoBmgJaA9DCB79L9eic2BAlIaUUpRoFU3oA2gWR0CRqYZMcp9adX2UKGgGaAloD0MIEaeTbHX4Y0CUhpRSlGgVTegDaBZHQJG2kTfzjFR1fZQoaAZoCWgPQwh9Bz9xgNJgQJSGlFKUaBVN6ANoFkdAkbo1gpjMFHV9lChoBmgJaA9DCMUbmUd+6GRAlIaUUpRoFU3oA2gWR0CRvRsGgSOBdX2UKGgGaAloD0MItYmT+x0dYECUhpRSlGgVTegDaBZHQJG9mWTot+V1fZQoaAZoCWgPQwhUNxd/26MWwJSGlFKUaBVNAQFoFkdAkcluYplSTHV9lChoBmgJaA9DCPBsj97wuWVAlIaUUpRoFU3oA2gWR0CR0dhuO0b+dX2UKGgGaAloD0MIgZcZNkp4YUCUhpRSlGgVTegDaBZHQJHTX0PH1e11fZQoaAZoCWgPQwheDybFx79hQJSGlFKUaBVN6ANoFkdAkdPnYL9deXV9lChoBmgJaA9DCI3ttaB3tGFAlIaUUpRoFU3oA2gWR0CR0/0aqCHzdX2UKGgGaAloD0MIoE55dCNPZUCUhpRSlGgVTegDaBZHQJHUdvMr3Cd1fZQoaAZoCWgPQwgi+yDLgjpiQJSGlFKUaBVN6ANoFkdAkdaebI91U3V9lChoBmgJaA9DCIVgVb18XGZAlIaUUpRoFU3oA2gWR0CR1wTFl05mdX2UKGgGaAloD0MIqKs7Flu9Y0CUhpRSlGgVTegDaBZHQJHXnJA+pwV1fZQoaAZoCWgPQwjSNv5E5fBkQJSGlFKUaBVN6ANoFkdAkdmB5cC5mXV9lChoBmgJaA9DCEs8oGzKs2VAlIaUUpRoFU3oA2gWR0CR7mce8wpOdX2UKGgGaAloD0MI5/1/nLDbZUCUhpRSlGgVTegDaBZHQJHwmDFqBVd1fZQoaAZoCWgPQwhy+Q/pt3xtQJSGlFKUaBVNdgJoFkdAkfIkwaisXHV9lChoBmgJaA9DCOccPBOaNWNAlIaUUpRoFU3oA2gWR0CR9BdHDrJKdX2UKGgGaAloD0MIWFnbFA8OY0CUhpRSlGgVTegDaBZHQJIA4gkka/B1fZQoaAZoCWgPQwg+6q9X2LVjQJSGlFKUaBVN6ANoFkdAkgg0SRKYiXV9lChoBmgJaA9DCNuF5joNcWRAlIaUUpRoFU3oA2gWR0CSFtkgfU4JdX2UKGgGaAloD0MI61c6H56sZUCUhpRSlGgVTegDaBZHQJIf62+fywx1fZQoaAZoCWgPQwi/EHLe/49kQJSGlFKUaBVN6ANoFkdAkiFsUmD15HV9lChoBmgJaA9DCL0ZNV+lgWBAlIaUUpRoFU3oA2gWR0CSIfdRR/EwdX2UKGgGaAloD0MIspyE0peSZECUhpRSlGgVTegDaBZHQJIiCaF23a11fZQoaAZoCWgPQwgdWfllMMpgQJSGlFKUaBVN6ANoFkdAkiKIaLn9vXV9lChoBmgJaA9DCHvZdtqaZ2JAlIaUUpRoFU3oA2gWR0CSJMJJXhfjdX2UKGgGaAloD0MIWvENhc/fZkCUhpRSlGgVTegDaBZHQJIlI+Ofdyl1fZQoaAZoCWgPQwheSIeHMJthQJSGlFKUaBVN6ANoFkdAkiW92xIJ7nV9lChoBmgJaA9DCHVbIhccPWdAlIaUUpRoFU3oA2gWR0CSJ4pEx7AtdX2UKGgGaAloD0MI0h3EzhQTaECUhpRSlGgVTegDaBZHQJI8CeFtbcJ1fZQoaAZoCWgPQwhJhEawccBiQJSGlFKUaBVN6ANoFkdAkj4WeUY8+3V9lChoBmgJaA9DCD0QWaSJZWJAlIaUUpRoFU3oA2gWR0CSP4d4mkWRdX2UKGgGaAloD0MIg6eQK/UZX0CUhpRSlGgVTegDaBZHQJJBbA57w8Z1fZQoaAZoCWgPQwiCOA8nMOxhQJSGlFKUaBVN6ANoFkdAkk4FgQYk3XV9lChoBmgJaA9DCFu21heJvGBAlIaUUpRoFU3oA2gWR0CSVMz3h4t6dX2UKGgGaAloD0MIzcmLTMA/NkCUhpRSlGgVS89oFkdAkmGlwT/Q0HV9lChoBmgJaA9DCGraxTRTJ2FAlIaUUpRoFU3oA2gWR0CSYeEjgQ6IdX2UKGgGaAloD0MIDVNb6qAaZ0CUhpRSlGgVTegDaBZHQJJpXlzU7S11fZQoaAZoCWgPQwjDYz+LpQdfQJSGlFKUaBVN6ANoFkdAkmq5u2qkunV9lChoBmgJaA9DCLSPFfw2t19AlIaUUpRoFU3oA2gWR0CSay61b7j1dX2UKGgGaAloD0MIt9WsM76lYkCUhpRSlGgVTegDaBZHQJJrPgaWHDd1fZQoaAZoCWgPQwgRUrezL81nQJSGlFKUaBVN6ANoFkdAkmuojB2wFHV9lChoBmgJaA9DCJ2C/GxkfWBAlIaUUpRoFU3oA2gWR0CSbbdtl7MQdX2UKGgGaAloD0MIlYCYhAvbYECUhpRSlGgVTegDaBZHQJJuJKAavRt1fZQoaAZoCWgPQwgpCB7f3n5fQJSGlFKUaBVN6ANoFkdAkm6+S0Sh8XV9lChoBmgJaA9DCOmdCrjnfWZAlIaUUpRoFU3oA2gWR0CScHh/Aj6fdX2UKGgGaAloD0MIzhq8r0pJY0CUhpRSlGgVTegDaBZHQJJyYEZBLPF1fZQoaAZoCWgPQwiJ0Ag2riZkQJSGlFKUaBVN6ANoFkdAkobmBjFyaXV9lChoBmgJaA9DCEPlX8sriGJAlIaUUpRoFU3oA2gWR0CSiFDtw71adX2UKGgGaAloD0MIzcggd5G6Z0CUhpRSlGgVTegDaBZHQJKKQoa1kUd1fZQoaAZoCWgPQwiwqfOoeAdkQJSGlFKUaBVN6ANoFkdAkpXCauwHJXV9lChoBmgJaA9DCNkiaTf692JAlIaUUpRoFU3oA2gWR0CSqVwkgOjJdX2UKGgGaAloD0MIKLhYUQMsZkCUhpRSlGgVTegDaBZHQJKpms7uDz11fZQoaAZoCWgPQwh97C5Q0rFhQJSGlFKUaBVN6ANoFkdAkrGg7kn1F3V9lChoBmgJaA9DCIWzW8tkM2NAlIaUUpRoFU3oA2gWR0CSsv68g6ltdX2UKGgGaAloD0MIlzyelh94YUCUhpRSlGgVTegDaBZHQJKzgtK7I1d1fZQoaAZoCWgPQwhjmBO0SZZjQJSGlFKUaBVN6ANoFkdAkrOUA93bEnV9lChoBmgJaA9DCPiNrz0zL2VAlIaUUpRoFU3oA2gWR0CStATNMXabdX2UKGgGaAloD0MISDZXzfNTZECUhpRSlGgVTegDaBZHQJK2K1MM7U51fZQoaAZoCWgPQwgXnwJgPCBgQJSGlFKUaBVN6ANoFkdAkraUS26TXHV9lChoBmgJaA9DCMzuycPCj2FAlIaUUpRoFU3oA2gWR0CSty5ooNNKdX2UKGgGaAloD0MIVOOlm0ROZUCUhpRSlGgVTegDaBZHQJK5CcDr7fp1fZQoaAZoCWgPQwj8bU+Q2DFnQJSGlFKUaBVN6ANoFkdAkrsDewcHW3V9lChoBmgJaA9DCNo8DoP5FGFAlIaUUpRoFU3oA2gWR0CS0CRW912adX2UKGgGaAloD0MIWBr4UQ3wXECUhpRSlGgVTegDaBZHQJLRjnaFmFt1fZQoaAZoCWgPQwi1wvS9hrJIQJSGlFKUaBVL1WgWR0CS0kT3IuGsdX2UKGgGaAloD0MIZVJDGwDtZ0CUhpRSlGgVTegDaBZHQJLTcO09hZ11fZQoaAZoCWgPQwgqq+l6YiVxQJSGlFKUaBVNFgNoFkdAktOdEsrd33V9lChoBmgJaA9DCG+70Fwn6m5AlIaUUpRoFU23AmgWR0CS7OL5RCQcdX2UKGgGaAloD0MIOwFNhI1EZ0CUhpRSlGgVTegDaBZHQJLv/GBFuvV1fZQoaAZoCWgPQwibH39pUWVnQJSGlFKUaBVN6ANoFkdAkvAty5qdpnV9lChoBmgJaA9DCO2BVmBImmJAlIaUUpRoFU3oA2gWR0CS9nIqLCN0dX2UKGgGaAloD0MInDBhNKs5ZkCUhpRSlGgVTegDaBZHQJL3gkNWluZ1fZQoaAZoCWgPQwj0FaQZCxRhQJSGlFKUaBVN6ANoFkdAkvfkHMUypXV9lChoBmgJaA9DCKkz95BwGGFAlIaUUpRoFU3oA2gWR0CS9/D7655JdX2UKGgGaAloD0MI8BRypZ4dYUCUhpRSlGgVTegDaBZHQJL4R0cOskp1fZQoaAZoCWgPQwih8q/lFUJiQJSGlFKUaBVN6ANoFkdAkvoWIGhVVHV9lChoBmgJaA9DCFw7URKSy2RAlIaUUpRoFU3oA2gWR0CS/MybQTmGdX2UKGgGaAloD0MIkq0upwSYZECUhpRSlGgVTegDaBZHQJL++mO2iL51fZQoaAZoCWgPQwjjVdY2RZZgQJSGlFKUaBVN6ANoFkdAkwFYnF5v+HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}