zach commited on
Commit
3ef1661
·
1 Parent(s): 474ea9a

initial commit based on github repo

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. LICENSE +121 -0
  3. README.md +319 -3
  4. data/gene_annos_kitti_demo.py +32 -0
  5. data/gene_annos_nyu_demo.py +31 -0
  6. data/kitti_demo/depth/0000000005.png +3 -0
  7. data/kitti_demo/depth/0000000050.png +3 -0
  8. data/kitti_demo/depth/0000000100.png +3 -0
  9. data/kitti_demo/rgb/0000000005.png +3 -0
  10. data/kitti_demo/rgb/0000000050.png +3 -0
  11. data/kitti_demo/rgb/0000000100.png +3 -0
  12. data/kitti_demo/test_annotations.json +1 -0
  13. data/nyu_demo/depth/sync_depth_00000.png +3 -0
  14. data/nyu_demo/depth/sync_depth_00050.png +3 -0
  15. data/nyu_demo/depth/sync_depth_00100.png +3 -0
  16. data/nyu_demo/rgb/rgb_00000.jpg +0 -0
  17. data/nyu_demo/rgb/rgb_00050.jpg +0 -0
  18. data/nyu_demo/rgb/rgb_00100.jpg +0 -0
  19. data/nyu_demo/test_annotations.json +1 -0
  20. data/wild_demo/david-kohler-VFRTXGw1VjU-unsplash.jpg +0 -0
  21. data/wild_demo/jonathan-borba-CnthDZXCdoY-unsplash.jpg +0 -0
  22. data/wild_demo/randy-fath-G1yhU1Ej-9A-unsplash.jpg +0 -0
  23. data_info/__init__.py +2 -0
  24. data_info/pretrained_weight.py +16 -0
  25. data_info/public_datasets.py +7 -0
  26. media/gifs/demo_1.gif +3 -0
  27. media/gifs/demo_12.gif +3 -0
  28. media/gifs/demo_2.gif +3 -0
  29. media/gifs/demo_22.gif +3 -0
  30. media/screenshots/challenge.PNG +0 -0
  31. media/screenshots/page2.png +3 -0
  32. media/screenshots/pipeline.png +3 -0
  33. mono/configs/HourglassDecoder/convlarge.0.3_150.py +25 -0
  34. mono/configs/HourglassDecoder/test_kitti_convlarge.0.3_150.py +25 -0
  35. mono/configs/HourglassDecoder/test_nyu_convlarge.0.3_150.py +25 -0
  36. mono/configs/HourglassDecoder/vit.raft5.large.py +33 -0
  37. mono/configs/HourglassDecoder/vit.raft5.small.py +33 -0
  38. mono/configs/__init__.py +1 -0
  39. mono/configs/_base_/_data_base_.py +13 -0
  40. mono/configs/_base_/datasets/_data_base_.py +12 -0
  41. mono/configs/_base_/default_runtime.py +4 -0
  42. mono/configs/_base_/models/backbones/convnext_large.py +16 -0
  43. mono/configs/_base_/models/backbones/dino_vit_large.py +7 -0
  44. mono/configs/_base_/models/backbones/dino_vit_large_reg.py +7 -0
  45. mono/configs/_base_/models/backbones/dino_vit_small_reg.py +7 -0
  46. mono/configs/_base_/models/encoder_decoder/convnext_large.hourglassdecoder.py +10 -0
  47. mono/configs/_base_/models/encoder_decoder/dino_vit_large.dpt_raft.py +20 -0
  48. mono/configs/_base_/models/encoder_decoder/dino_vit_large_reg.dpt_raft.py +19 -0
  49. mono/configs/_base_/models/encoder_decoder/dino_vit_small_reg.dpt_raft.py +19 -0
  50. mono/model/__init__.py +5 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.gif filter=lfs diff=lfs merge=lfs -text
37
+ *.png filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Creative Commons Legal Code
2
+
3
+ CC0 1.0 Universal
4
+
5
+ CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
6
+ LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
7
+ ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
8
+ INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
9
+ REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
10
+ PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
11
+ THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
12
+ HEREUNDER.
13
+
14
+ Statement of Purpose
15
+
16
+ The laws of most jurisdictions throughout the world automatically confer
17
+ exclusive Copyright and Related Rights (defined below) upon the creator
18
+ and subsequent owner(s) (each and all, an "owner") of an original work of
19
+ authorship and/or a database (each, a "Work").
20
+
21
+ Certain owners wish to permanently relinquish those rights to a Work for
22
+ the purpose of contributing to a commons of creative, cultural and
23
+ scientific works ("Commons") that the public can reliably and without fear
24
+ of later claims of infringement build upon, modify, incorporate in other
25
+ works, reuse and redistribute as freely as possible in any form whatsoever
26
+ and for any purposes, including without limitation commercial purposes.
27
+ These owners may contribute to the Commons to promote the ideal of a free
28
+ culture and the further production of creative, cultural and scientific
29
+ works, or to gain reputation or greater distribution for their Work in
30
+ part through the use and efforts of others.
31
+
32
+ For these and/or other purposes and motivations, and without any
33
+ expectation of additional consideration or compensation, the person
34
+ associating CC0 with a Work (the "Affirmer"), to the extent that he or she
35
+ is an owner of Copyright and Related Rights in the Work, voluntarily
36
+ elects to apply CC0 to the Work and publicly distribute the Work under its
37
+ terms, with knowledge of his or her Copyright and Related Rights in the
38
+ Work and the meaning and intended legal effect of CC0 on those rights.
39
+
40
+ 1. Copyright and Related Rights. A Work made available under CC0 may be
41
+ protected by copyright and related or neighboring rights ("Copyright and
42
+ Related Rights"). Copyright and Related Rights include, but are not
43
+ limited to, the following:
44
+
45
+ i. the right to reproduce, adapt, distribute, perform, display,
46
+ communicate, and translate a Work;
47
+ ii. moral rights retained by the original author(s) and/or performer(s);
48
+ iii. publicity and privacy rights pertaining to a person's image or
49
+ likeness depicted in a Work;
50
+ iv. rights protecting against unfair competition in regards to a Work,
51
+ subject to the limitations in paragraph 4(a), below;
52
+ v. rights protecting the extraction, dissemination, use and reuse of data
53
+ in a Work;
54
+ vi. database rights (such as those arising under Directive 96/9/EC of the
55
+ European Parliament and of the Council of 11 March 1996 on the legal
56
+ protection of databases, and under any national implementation
57
+ thereof, including any amended or successor version of such
58
+ directive); and
59
+ vii. other similar, equivalent or corresponding rights throughout the
60
+ world based on applicable law or treaty, and any national
61
+ implementations thereof.
62
+
63
+ 2. Waiver. To the greatest extent permitted by, but not in contravention
64
+ of, applicable law, Affirmer hereby overtly, fully, permanently,
65
+ irrevocably and unconditionally waives, abandons, and surrenders all of
66
+ Affirmer's Copyright and Related Rights and associated claims and causes
67
+ of action, whether now known or unknown (including existing as well as
68
+ future claims and causes of action), in the Work (i) in all territories
69
+ worldwide, (ii) for the maximum duration provided by applicable law or
70
+ treaty (including future time extensions), (iii) in any current or future
71
+ medium and for any number of copies, and (iv) for any purpose whatsoever,
72
+ including without limitation commercial, advertising or promotional
73
+ purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
74
+ member of the public at large and to the detriment of Affirmer's heirs and
75
+ successors, fully intending that such Waiver shall not be subject to
76
+ revocation, rescission, cancellation, termination, or any other legal or
77
+ equitable action to disrupt the quiet enjoyment of the Work by the public
78
+ as contemplated by Affirmer's express Statement of Purpose.
79
+
80
+ 3. Public License Fallback. Should any part of the Waiver for any reason
81
+ be judged legally invalid or ineffective under applicable law, then the
82
+ Waiver shall be preserved to the maximum extent permitted taking into
83
+ account Affirmer's express Statement of Purpose. In addition, to the
84
+ extent the Waiver is so judged Affirmer hereby grants to each affected
85
+ person a royalty-free, non transferable, non sublicensable, non exclusive,
86
+ irrevocable and unconditional license to exercise Affirmer's Copyright and
87
+ Related Rights in the Work (i) in all territories worldwide, (ii) for the
88
+ maximum duration provided by applicable law or treaty (including future
89
+ time extensions), (iii) in any current or future medium and for any number
90
+ of copies, and (iv) for any purpose whatsoever, including without
91
+ limitation commercial, advertising or promotional purposes (the
92
+ "License"). The License shall be deemed effective as of the date CC0 was
93
+ applied by Affirmer to the Work. Should any part of the License for any
94
+ reason be judged legally invalid or ineffective under applicable law, such
95
+ partial invalidity or ineffectiveness shall not invalidate the remainder
96
+ of the License, and in such case Affirmer hereby affirms that he or she
97
+ will not (i) exercise any of his or her remaining Copyright and Related
98
+ Rights in the Work or (ii) assert any associated claims and causes of
99
+ action with respect to the Work, in either case contrary to Affirmer's
100
+ express Statement of Purpose.
101
+
102
+ 4. Limitations and Disclaimers.
103
+
104
+ a. No trademark or patent rights held by Affirmer are waived, abandoned,
105
+ surrendered, licensed or otherwise affected by this document.
106
+ b. Affirmer offers the Work as-is and makes no representations or
107
+ warranties of any kind concerning the Work, express, implied,
108
+ statutory or otherwise, including without limitation warranties of
109
+ title, merchantability, fitness for a particular purpose, non
110
+ infringement, or the absence of latent or other defects, accuracy, or
111
+ the present or absence of errors, whether or not discoverable, all to
112
+ the greatest extent permissible under applicable law.
113
+ c. Affirmer disclaims responsibility for clearing rights of other persons
114
+ that may apply to the Work or any use thereof, including without
115
+ limitation any person's Copyright and Related Rights in the Work.
116
+ Further, Affirmer disclaims responsibility for obtaining any necessary
117
+ consents, permissions or other rights required for any use of the
118
+ Work.
119
+ d. Affirmer understands and acknowledges that Creative Commons is not a
120
+ party to this document and has no duty or obligation with respect to
121
+ this CC0 or use of the Work.
README.md CHANGED
@@ -1,3 +1,319 @@
1
- ---
2
- license: cc0-1.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚀 Metric3D Project 🚀
2
+
3
+ **Official PyTorch implementation of Metric3Dv1 and Metric3Dv2:**
4
+
5
+ [1] [Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image](https://arxiv.org/abs/2307.10984)
6
+
7
+ [2] Metric3Dv2: A Versatile Monocular Geometric Foundation Model for Zero-shot Metric Depth and Surface Normal Estimation
8
+
9
+ <a href='https://jugghm.github.io/Metric3Dv2'><img src='https://img.shields.io/badge/project%20page-@Metric3D-yellow.svg'></a>
10
+ <a href='https://arxiv.org/abs/2307.10984'><img src='https://img.shields.io/badge/arxiv-@Metric3Dv1-green'></a>
11
+ <a href='https:'><img src='https://img.shields.io/badge/arxiv (on hold)-@Metric3Dv2-red'></a>
12
+ <a href='https://huggingface.co/spaces/JUGGHM/Metric3D'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
13
+
14
+ [//]: # (### [Project Page]&#40;https://arxiv.org/abs/2307.08695&#41; | [v2 Paper]&#40;https://arxiv.org/abs/2307.10984&#41; | [v1 Arxiv]&#40;https://arxiv.org/abs/2307.10984&#41; | [Video]&#40;https://www.youtube.com/playlist?list=PLEuyXJsWqUNd04nwfm9gFBw5FVbcaQPl3&#41; | [Hugging Face 🤗]&#40;https://huggingface.co/spaces/JUGGHM/Metric3D&#41; )
15
+
16
+ ## News and TO DO LIST
17
+
18
+ - [ ] Droid slam codes
19
+ - [ ] Release the ViT-giant2 model
20
+ - [ ] Focal length free mode
21
+ - [ ] Floating noise removing mode
22
+ - [ ] Improving HuggingFace Demo and Visualization
23
+ - [x] Release training codes
24
+
25
+ - `[2024/3/18]` HuggingFace GPU version updated!
26
+ - `[2024/3/18]` [Project page](https://jugghm.github.io/Metric3Dv2/) released!
27
+ - `[2024/3/18]` Metric3D V2 models released, supporting metric depth and surface normal now!
28
+ - `[2023/8/10]` Inference codes, pretrained weights, and demo released.
29
+ - `[2023/7]` Metric3D accepted by ICCV 2023!
30
+ - `[2023/4]` The Champion of [2nd Monocular Depth Estimation Challenge](https://jspenmar.github.io/MDEC) in CVPR 2023
31
+
32
+ ## 🌼 Abstract
33
+ Metric3D is a versatile geometric foundation model for high-quality and zero-shot **metric depth** and **surface normal** estimation from a single image. It excels at solving in-the-wild scene reconstruction.
34
+
35
+ ![page2](media/screenshots/page2.png)
36
+
37
+
38
+
39
+ ## 📝 Benchmarks
40
+
41
+ ### Metric Depth
42
+
43
+ [//]: # (#### Zero-shot Testing)
44
+
45
+ [//]: # (Our models work well on both indoor and outdoor scenarios, compared with other zero-shot metric depth estimation methods.)
46
+
47
+ [//]: # ()
48
+ [//]: # (| | Backbone | KITTI $\delta 1$ ↑ | KITTI $\delta 2$ ↑ | KITTI $\delta 3$ ↑ | KITTI AbsRel ↓ | KITTI RMSE ↓ | KITTI RMS_log ↓ | NYU $\delta 1$ ↑ | NYU $\delta 2$ ↑ | NYU $\delta 3$ ↑ | NYU AbsRel ↓ | NYU RMSE ↓ | NYU log10 ↓ |)
49
+
50
+ [//]: # (|-----------------|------------|--------------------|---------------------|--------------------|-----------------|---------------|------------------|------------------|------------------|------------------|---------------|-------------|--------------|)
51
+
52
+ [//]: # (| ZeroDepth | ResNet-18 | 0.910 | 0.980 | 0.996 | 0.057 | 4.044 | 0.083 | 0.901 | 0.961 | - | 0.100 | 0.380 | - |)
53
+
54
+ [//]: # (| PolyMax | ConvNeXt-L | - | - | - | - | - | - | 0.969 | 0.996 | 0.999 | 0.067 | 0.250 | 0.033 |)
55
+
56
+ [//]: # (| Ours | ViT-L | 0.985 | 0.995 | 0.999 | 0.052 | 2.511 | 0.074 | 0.975 | 0.994 | 0.998 | 0.063 | 0.251 | 0.028 |)
57
+
58
+ [//]: # (| Ours | ViT-g2 | 0.989 | 0.996 | 0.999 | 0.051 | 2.403 | 0.080 | 0.980 | 0.997 | 0.999 | 0.067 | 0.260 | 0.030 |)
59
+
60
+ [//]: # ()
61
+ [//]: # ([//]: # &#40;| Adabins | Efficient-B5 | 0.964 | 0.995 | 0.999 | 0.058 | 2.360 | 0.088 | 0.903 | 0.984 | 0.997 | 0.103 | 0.0444 | 0.364 |&#41;)
62
+ [//]: # ([//]: # &#40;| NewCRFs | SwinT-L | 0.974 | 0.997 | 0.999 | 0.052 | 2.129 | 0.079 | 0.922 | 0.983 | 0.994 | 0.095 | 0.041 | 0.334 |&#41;)
63
+ [//]: # ([//]: # &#40;| Ours &#40;CSTM_label&#41; | ConvNeXt-L | 0.964 | 0.993 | 0.998 | 0.058 | 2.770 | 0.092 | 0.944 | 0.986 | 0.995 | 0.083 | 0.035 | 0.310 |&#41;)
64
+
65
+ [//]: # (#### Finetuned)
66
+ Our models rank 1st on the routing KITTI and NYU benchmarks.
67
+
68
+ | | Backbone | KITTI δ1 ↑ | KITTI δ2 ↑ | KITTI AbsRel ↓ | KITTI RMSE ↓ | KITTI RMS_log ↓ | NYU δ1 ↑ | NYU δ2 ↑ | NYU AbsRel ↓ | NYU RMSE ↓ | NYU log10 ↓ |
69
+ |---------------|-------------|------------|-------------|-----------------|---------------|------------------|----------|----------|---------------|-------------|--------------|
70
+ | ZoeDepth | ViT-Large | 0.971 | 0.995 | 0.053 | 2.281 | 0.082 | 0.953 | 0.995 | 0.077 | 0.277 | 0.033 |
71
+ | ZeroDepth | ResNet-18 | 0.968 | 0.996 | 0.057 | 2.087 | 0.083 | 0.954 | 0.995 | 0.074 | 0.269 | 0.103 |
72
+ | IEBins | SwinT-Large | 0.978 | 0.998 | 0.050 | 2.011 | 0.075 | 0.936 | 0.992 | 0.087 | 0.314 | 0.031 |
73
+ | DepthAnything | ViT-Large | 0.982 | 0.998 | 0.046 | 1.985 | 0.069 | 0.984 | 0.998 | 0.056 | 0.206 | 0.024 |
74
+ | Ours | ViT-Large | 0.985 | 0.998 | 0.999 | 1.985 | 0.064 | 0.989 | 0.998 | 0.047 | 0.183 | 0.020 |
75
+ | Ours | ViT-giant2 | 0.989 | 0.998 | 1.000 | 1.766 | 0.060 | 0.987 | 0.997 | 0.045 | 0.187 | 0.015 |
76
+
77
+ ### Affine-invariant Depth
78
+ Even compared to recent affine-invariant depth methods (Marigold and Depth Anything), our metric-depth (and normal) models still show superior performance.
79
+
80
+ | | #Data for Pretrain and Train | KITTI Absrel ↓ | KITTI δ1 ↑ | NYUv2 AbsRel ↓ | NYUv2 δ1 ↑ | DIODE-Full AbsRel ↓ | DIODE-Full δ1 ↑ | Eth3d AbsRel ↓ | Eth3d δ1 ↑ |
81
+ |-----------------------|----------------------------------------------|----------------|------------|-----------------|------------|---------------------|-----------------|----------------------|------------|
82
+ | OmniData (v2, ViT-L) | 1.3M + 12.2M | 0.069 | 0.948 | 0.074 | 0.945 | 0.149 | 0.835 | 0.166 | 0.778 |
83
+ | MariGold (LDMv2) | 5B + 74K | 0.099 | 0.916 | 0.055 | 0.961 | 0.308 | 0.773 | 0.127 | 0.960 |
84
+ | DepthAnything (ViT-L) | 142M + 63M | 0.076 | 0.947 | 0.043 | 0.981 | 0.277 | 0.759 | 0.065 | 0.882 |
85
+ | Ours (ViT-L) | 142M + 16M | 0.042 | 0.979 | 0.042 | 0.980 | 0.141 | 0.882 | 0.042 | 0.987 |
86
+ | Ours (ViT-g) | 142M + 16M | 0.043 | 0.982 | 0.043 | 0.981 | 0.136 | 0.895 | 0.042 | 0.983 |
87
+
88
+
89
+ ### Surface Normal
90
+ Our models also show powerful performance on normal benchmarks.
91
+
92
+ | | NYU 11.25° ↑ | NYU Mean ↓ | NYU RMS ↓ | ScanNet 11.25° ↑ | ScanNet Mean ↓ | ScanNet RMS ↓ | iBims 11.25° ↑ | iBims Mean ↓ | iBims RMS ↓ |
93
+ |--------------|----------|----------|-----------|-----------------|----------------|--------------|---------------|--------------|-------------|
94
+ | EESNU | 0.597 | 16.0 | 24.7 | 0.711 | 11.8 | 20.3 | 0.585 | 20.0 | - |
95
+ | IronDepth | - | - | - | - | - | - | 0.431 | 25.3 | 37.4 |
96
+ | PolyMax | 0.656 | 13.1 | 20.4 | - | - | - | - | - | - |
97
+ | Ours (ViT-L) | 0.688 | 12.0 | 19.2 | 0.760 | 9.9 | 16.4 | 0.694 | 19.4 | 34.9 |
98
+ | Ours (ViT-g) | 0.662 | 13.2 | 20.2 | 0.778 | 9.2 | 15.3 | 0.697 | 19.6 | 35.2 |
99
+
100
+
101
+
102
+ ## 🌈 DEMOs
103
+
104
+ ### Zero-shot monocular metric depth & surface normal
105
+ <img src="media/gifs/demo_1.gif" width="600" height="337">
106
+ <img src="media/gifs/demo_12.gif" width="600" height="337">
107
+
108
+ ### Zero-shot metric 3D recovery
109
+ <img src="media/gifs/demo_2.gif" width="600" height="337">
110
+
111
+ ### Improving monocular SLAM
112
+ <img src="media/gifs/demo_22.gif" width="600" height="337">
113
+
114
+ [//]: # (https://github.com/YvanYin/Metric3D/assets/35299633/f95815ef-2506-4193-a6d9-1163ea821268)
115
+
116
+ [//]: # (https://github.com/YvanYin/Metric3D/assets/35299633/ed00706c-41cc-49ea-accb-ad0532633cc2)
117
+
118
+ [//]: # (### Zero-shot metric 3D recovery)
119
+
120
+ [//]: # (https://github.com/YvanYin/Metric3D/assets/35299633/26cd7ae1-dd5a-4446-b275-54c5ca7ef945)
121
+
122
+ [//]: # (https://github.com/YvanYin/Metric3D/assets/35299633/21e5484b-c304-4fe3-b1d3-8eebc4e26e42)
123
+ [//]: # (### Monocular reconstruction for a Sequence)
124
+
125
+ [//]: # ()
126
+ [//]: # (### In-the-wild 3D reconstruction)
127
+
128
+ [//]: # ()
129
+ [//]: # (| | Image | Reconstruction | Pointcloud File |)
130
+
131
+ [//]: # (|:---------:|:------------------:|:------------------:|:--------:|)
132
+
133
+ [//]: # (| room | <img src="data/wild_demo/jonathan-borba-CnthDZXCdoY-unsplash.jpg" width="300" height="335"> | <img src="media/gifs/room.gif" width="300" height="335"> | [Download]&#40;https://drive.google.com/file/d/1P1izSegH2c4LUrXGiUksw037PVb0hjZr/view?usp=drive_link&#41; |)
134
+
135
+ [//]: # (| Colosseum | <img src="data/wild_demo/david-kohler-VFRTXGw1VjU-unsplash.jpg" width="300" height="169"> | <img src="media/gifs/colo.gif" width="300" height="169"> | [Download]&#40;https://drive.google.com/file/d/1jJCXe5IpxBhHDr0TZtNZhjxKTRUz56Hg/view?usp=drive_link&#41; |)
136
+
137
+ [//]: # (| chess | <img src="data/wild_demo/randy-fath-G1yhU1Ej-9A-unsplash.jpg" width="300" height="169" align=center> | <img src="media/gifs/chess.gif" width="300" height="169"> | [Download]&#40;https://drive.google.com/file/d/1oV_Foq25_p-tTDRTcyO2AzXEdFJQz-Wm/view?usp=drive_link&#41; |)
138
+
139
+ [//]: # ()
140
+ [//]: # (All three images are downloaded from [unplash]&#40;https://unsplash.com/&#41; and put in the data/wild_demo directory.)
141
+
142
+ [//]: # ()
143
+ [//]: # (### 3D metric reconstruction, Metric3D × DroidSLAM)
144
+
145
+ [//]: # (Metric3D can also provide scale information for DroidSLAM, help to solve the scale drift problem for better trajectories. )
146
+
147
+ [//]: # ()
148
+ [//]: # (#### Bird Eyes' View &#40;Left: Droid-SLAM &#40;mono&#41;. Right: Droid-SLAM with Metric-3D&#41;)
149
+
150
+ [//]: # ()
151
+ [//]: # (<div align=center>)
152
+
153
+ [//]: # (<img src="media/gifs/0028.gif"> )
154
+
155
+ [//]: # (</div>)
156
+
157
+ [//]: # ()
158
+ [//]: # (### Front View)
159
+
160
+ [//]: # ()
161
+ [//]: # (<div align=center>)
162
+
163
+ [//]: # (<img src="media/gifs/0028_fv.gif"> )
164
+
165
+ [//]: # (</div>)
166
+
167
+ [//]: # ()
168
+ [//]: # (#### KITTI odemetry evaluation &#40;Translational RMS drift &#40;t_rel, ↓&#41; / Rotational RMS drift &#40;r_rel, ↓&#41;&#41;)
169
+
170
+ [//]: # (| | Modality | seq 00 | seq 02 | seq 05 | seq 06 | seq 08 | seq 09 | seq 10 |)
171
+
172
+ [//]: # (|:----------:|:--------:|:----------:|:----------:|:---------:|:----------:|:----------:|:---------:|:---------:|)
173
+
174
+ [//]: # (| ORB-SLAM2 | Mono | 11.43/0.58 | 10.34/0.26 | 9.04/0.26 | 14.56/0.26 | 11.46/0.28 | 9.3/0.26 | 2.57/0.32 |)
175
+
176
+ [//]: # (| Droid-SLAM | Mono | 33.9/0.29 | 34.88/0.27 | 23.4/0.27 | 17.2/0.26 | 39.6/0.31 | 21.7/0.23 | 7/0.25 |)
177
+
178
+ [//]: # (| Droid+Ours | Mono | 1.44/0.37 | 2.64/0.29 | 1.44/0.25 | 0.6/0.2 | 2.2/0.3 | 1.63/0.22 | 2.73/0.23 |)
179
+
180
+ [//]: # (| ORB-SLAM2 | Stereo | 0.88/0.31 | 0.77/0.28 | 0.62/0.26 | 0.89/0.27 | 1.03/0.31 | 0.86/0.25 | 0.62/0.29 |)
181
+
182
+ [//]: # ()
183
+ [//]: # (Metric3D makes the mono-SLAM scale-aware, like stereo systems.)
184
+
185
+ [//]: # ()
186
+ [//]: # (#### KITTI sequence videos - Youtube)
187
+
188
+ [//]: # ([2011_09_30_drive_0028]&#40;https://youtu.be/gcTB4MgVCLQ&#41; /)
189
+
190
+ [//]: # ([2011_09_30_drive_0033]&#40;https://youtu.be/He581fmoPP4&#41; /)
191
+
192
+ [//]: # ([2011_09_30_drive_0034]&#40;https://youtu.be/I3PkukQ3_F8&#41;)
193
+
194
+ [//]: # ()
195
+ [//]: # (#### Estimated pose)
196
+
197
+ [//]: # ([2011_09_30_drive_0033]&#40;https://drive.google.com/file/d/1SMXWzLYrEdmBe6uYMR9ShtDXeFDewChv/view?usp=drive_link&#41; / )
198
+
199
+ [//]: # ([2011_09_30_drive_0034]&#40;https://drive.google.com/file/d/1ONU4GxpvTlgW0TjReF1R2i-WFxbbjQPG/view?usp=drive_link&#41; /)
200
+
201
+ [//]: # ([2011_10_03_drive_0042]&#40;https://drive.google.com/file/d/19fweg6p1Q6TjJD2KlD7EMA_aV4FIeQUD/view?usp=drive_link&#41;)
202
+
203
+ [//]: # ()
204
+ [//]: # (#### Pointcloud files)
205
+
206
+ [//]: # ([2011_09_30_drive_0033]&#40;https://drive.google.com/file/d/1K0o8DpUmLf-f_rue0OX1VaHlldpHBAfw/view?usp=drive_link&#41; /)
207
+
208
+ [//]: # ([2011_09_30_drive_0034]&#40;https://drive.google.com/file/d/1bvZ6JwMRyvi07H7Z2VD_0NX1Im8qraZo/view?usp=drive_link&#41; /)
209
+
210
+ [//]: # ([2011_10_03_drive_0042]&#40;https://drive.google.com/file/d/1Vw59F8nN5ApWdLeGKXvYgyS9SNKHKy4x/view?usp=drive_link&#41;)
211
+
212
+ ## 🔨 Installation
213
+ ### One-line Installation
214
+ For the ViT models, use the following environment:
215
+ ```bash
216
+ pip install -r requirements_v2.txt
217
+ ```
218
+
219
+ For ConvNeXt-L, it is
220
+ ```bash
221
+ pip install -r requirements_v1.txt
222
+ ```
223
+
224
+ ### dataset annotation components
225
+ With off-the-shelf depth datasets, we need to generate json annotaions in compatible with this dataset, which is organized by:
226
+ ```
227
+ dict(
228
+ 'files':list(
229
+ dict(
230
+ 'rgb': 'data/kitti_demo/rgb/xxx.png',
231
+ 'depth': 'data/kitti_demo/depth/xxx.png',
232
+ 'depth_scale': 1000.0 # the depth scale of gt depth img.
233
+ 'cam_in': [fx, fy, cx, cy],
234
+ ),
235
+
236
+ dict(
237
+ ...
238
+ ),
239
+
240
+ ...
241
+ )
242
+ )
243
+ ```
244
+ To generate such annotations, please refer to the "Inference" section.
245
+
246
+ ### configs
247
+ In ```mono/configs``` we provide different config setups.
248
+
249
+ Intrinsics of the canonical camera is set bellow:
250
+ ```
251
+ canonical_space = dict(
252
+ img_size=(512, 960),
253
+ focal_length=1000.0,
254
+ ),
255
+ ```
256
+ where cx and cy is set to be half of the image size.
257
+
258
+ Inference settings are defined as
259
+ ```
260
+ depth_range=(0, 1),
261
+ depth_normalize=(0.3, 150),
262
+ crop_size = (512, 1088),
263
+ ```
264
+ where the images will be first resized as the ```crop_size``` and then fed into the model.
265
+
266
+ ## ✈️ Inference
267
+ ### Download Checkpoint
268
+ | | Encoder | Decoder | Link |
269
+ |:----:|:-------------------:|:-----------------:|:-------------------------------------------------------------------------------------------------:|
270
+ | v1-T | ConvNeXt-Tiny | Hourglass-Decoder | Coming soon |
271
+ | v1-L | ConvNeXt-Large | Hourglass-Decoder | [Download](https://drive.google.com/file/d/1KVINiBkVpJylx_6z1lAC7CQ4kmn-RJRN/view?usp=drive_link) |
272
+ | v2-S | DINO2reg-ViT-Small | RAFT-4iter | [Download](https://drive.google.com/file/d/1YfmvXwpWmhLg3jSxnhT7LvY0yawlXcr_/view?usp=drive_link) |
273
+ | v2-L | DINO2reg-ViT-Large | RAFT-8iter | [Download](https://drive.google.com/file/d/1eT2gG-kwsVzNy5nJrbm4KC-9DbNKyLnr/view?usp=drive_link) |
274
+ | v2-g | DINO2reg-ViT-giant2 | RAFT-8iter | Coming soon |
275
+
276
+ ### Dataset Mode
277
+ 1. put the trained ckpt file ```model.pth``` in ```weight/```.
278
+ 2. generate data annotation by following the code ```data/gene_annos_kitti_demo.py```, which includes 'rgb', (optional) 'intrinsic', (optional) 'depth', (optional) 'depth_scale'.
279
+ 3. change the 'test_data_path' in ```test_*.sh``` to the ```*.json``` path.
280
+ 4. run ```source test_kitti.sh``` or ```source test_nyu.sh```.
281
+
282
+ ### In-the-Wild Mode
283
+ 1. put the trained ckpt file ```model.pth``` in ```weight/```.
284
+ 2. change the 'test_data_path' in ```test.sh``` to the image folder path.
285
+ 3. run ```source test_vit.sh``` for transformers and ```source test.sh``` for convnets.
286
+ As no intrinsics are provided, we provided by default 9 settings of focal length.
287
+
288
+ ## ❓ Q & A
289
+ ### Q1: Why depth maps look good but pointclouds are distorted?
290
+ Because the focal length is not properly set! Please find a proper focal length by modifying codes [here](mono/utils/do_test.py#309) yourself.
291
+
292
+ ### Q2: Why the pointclouds are too slow to be generated?
293
+ Because the images are too large! Use smaller ones instead.
294
+
295
+ ### Q3: Why predicted depth maps are not satisfactory?
296
+ First be sure all black padding regions at image boundaries are cropped out. Then please try again.
297
+ Besides, metric 3D is not almighty. Some objects (chandeliers, drones...) / camera views (aerial view, bev...) do not occur frequently in the training datasets. We will going deeper into this and release more powerful solutions.
298
+
299
+ ## 📧 Citation
300
+ ```
301
+ @article{hu2024metric3dv2,
302
+ title={A Versatile Monocular Geometric Foundation Model for Zero-shot Metric Depth and Surface Normal Estimation},
303
+ author={Hu, Mu and Yin, Wei, and Zhang, Chi and Cai, Zhipeng and Long, Xiaoxiao and Chen, Hao, and Wang, Kaixuan and Yu, Gang and Shen, Chunhua and Shen, Shaojie},
304
+ booktitle={arXiv},
305
+ year={2024}
306
+ }
307
+ ```
308
+ ```
309
+ @article{yin2023metric,
310
+ title={Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image},
311
+ author={Wei Yin, Chi Zhang, Hao Chen, Zhipeng Cai, Gang Yu, Kaixuan Wang, Xiaozhi Chen, Chunhua Shen},
312
+ booktitle={ICCV},
313
+ year={2023}
314
+ }
315
+ ```
316
+
317
+ ## License and Contact
318
+
319
+ The *Metric 3D* code is under a 2-clause BSD License for non-commercial usage. For further questions, contact Dr. yvan.yin [yvanwy@outlook.com] and Mr. mu.hu [mhuam@connect.ust.hk].
data/gene_annos_kitti_demo.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ if __name__=='__main__':
2
+ import os
3
+ import os.path as osp
4
+ import numpy as np
5
+ import cv2
6
+ import json
7
+
8
+ code_root = '/mnt/nas/share/home/xugk/MetricDepth_test/'
9
+
10
+ data_root = osp.join(code_root, 'data/kitti_demo')
11
+ split_root = code_root
12
+
13
+ files = []
14
+ rgb_root = osp.join(data_root, 'rgb')
15
+ depth_root = osp.join(data_root, 'depth')
16
+ for rgb_file in os.listdir(rgb_root):
17
+ rgb_path = osp.join(rgb_root, rgb_file).split(split_root)[-1]
18
+ depth_path = rgb_path.replace('/rgb/', '/depth/')
19
+ cam_in = [707.0493, 707.0493, 604.0814, 180.5066]
20
+ depth_scale = 256.
21
+
22
+ meta_data = {}
23
+ meta_data['cam_in'] = cam_in
24
+ meta_data['rgb'] = rgb_path
25
+ meta_data['depth'] = depth_path
26
+ meta_data['depth_scale'] = depth_scale
27
+ files.append(meta_data)
28
+ files_dict = dict(files=files)
29
+
30
+ with open(osp.join(code_root, 'data/kitti_demo/test_annotations.json'), 'w') as f:
31
+ json.dump(files_dict, f)
32
+
data/gene_annos_nyu_demo.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ if __name__=='__main__':
2
+ import os
3
+ import os.path as osp
4
+ import numpy as np
5
+ import cv2
6
+ import json
7
+
8
+ code_root = '/mnt/nas/share/home/xugk/MetricDepth_test/'
9
+
10
+ data_root = osp.join(code_root, 'data/nyu_demo')
11
+ split_root = code_root
12
+
13
+ files = []
14
+ rgb_root = osp.join(data_root, 'rgb')
15
+ depth_root = osp.join(data_root, 'depth')
16
+ for rgb_file in os.listdir(rgb_root):
17
+ rgb_path = osp.join(rgb_root, rgb_file).split(split_root)[-1]
18
+ depth_path = rgb_path.replace('.jpg', '.png').replace('/rgb_', '/sync_depth_').replace('/rgb/', '/depth/')
19
+ cam_in = [518.8579, 519.46961, 325.58245, 253.73617]
20
+ depth_scale = 1000.
21
+
22
+ meta_data = {}
23
+ meta_data['cam_in'] = cam_in
24
+ meta_data['rgb'] = rgb_path
25
+ meta_data['depth'] = depth_path
26
+ meta_data['depth_scale'] = depth_scale
27
+ files.append(meta_data)
28
+ files_dict = dict(files=files)
29
+
30
+ with open(osp.join(code_root, 'data/nyu_demo/test_annotations.json'), 'w') as f:
31
+ json.dump(files_dict, f)
data/kitti_demo/depth/0000000005.png ADDED

Git LFS Details

  • SHA256: eb0d83fc93bcf235384c690ae405e0b24b3bfc6a05e1220a4c902bed3b5ba113
  • Pointer size: 131 Bytes
  • Size of remote file: 192 kB
data/kitti_demo/depth/0000000050.png ADDED

Git LFS Details

  • SHA256: 3eef554b3b312829e7d1e76a1acd13e7261024eb3c4d6e176328be377ff9216e
  • Pointer size: 131 Bytes
  • Size of remote file: 201 kB
data/kitti_demo/depth/0000000100.png ADDED

Git LFS Details

  • SHA256: 4b7e9c85e2b4f8131019fe93e0c1cf36f5058b30d040998a8199c4bb2d97e9b1
  • Pointer size: 131 Bytes
  • Size of remote file: 182 kB
data/kitti_demo/rgb/0000000005.png ADDED

Git LFS Details

  • SHA256: a9754dcadc8b3ace31a368500af3e382e2c0763242a7b054d424650cec67646a
  • Pointer size: 131 Bytes
  • Size of remote file: 873 kB
data/kitti_demo/rgb/0000000050.png ADDED

Git LFS Details

  • SHA256: 19e4f8f377521c8e28aca9addf2b695f9e374e5f44ee38d58970d12a21fbc4bf
  • Pointer size: 131 Bytes
  • Size of remote file: 874 kB
data/kitti_demo/rgb/0000000100.png ADDED

Git LFS Details

  • SHA256: 1f216c6fa51fb640c6cfb8a16cc91f60b20b1d2775def3d86c52c2bba1388365
  • Pointer size: 131 Bytes
  • Size of remote file: 916 kB
data/kitti_demo/test_annotations.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"files": [{"cam_in": [707.0493, 707.0493, 604.0814, 180.5066], "rgb": "data/kitti_demo/rgb/0000000050.png", "depth": "data/kitti_demo/depth/0000000050.png", "depth_scale": 256.0}, {"cam_in": [707.0493, 707.0493, 604.0814, 180.5066], "rgb": "data/kitti_demo/rgb/0000000100.png", "depth": "data/kitti_demo/depth/0000000100.png", "depth_scale": 256.0}, {"cam_in": [707.0493, 707.0493, 604.0814, 180.5066], "rgb": "data/kitti_demo/rgb/0000000005.png", "depth": "data/kitti_demo/depth/0000000005.png", "depth_scale": 256.0}]}
data/nyu_demo/depth/sync_depth_00000.png ADDED

Git LFS Details

  • SHA256: 043e9c8bee7af97afff01e451da3f5e9cd1591995f415944dd0dc91036a35b5a
  • Pointer size: 131 Bytes
  • Size of remote file: 166 kB
data/nyu_demo/depth/sync_depth_00050.png ADDED

Git LFS Details

  • SHA256: 53c764e869f61cf4240586395bc7374dcc02e65b8442801b53b74ffa563d30fe
  • Pointer size: 131 Bytes
  • Size of remote file: 182 kB
data/nyu_demo/depth/sync_depth_00100.png ADDED

Git LFS Details

  • SHA256: dc0c16d56bfdcc958f37fa28bcf39b110a14c317bfe3c221b3c3bc6d73dec67d
  • Pointer size: 131 Bytes
  • Size of remote file: 142 kB
data/nyu_demo/rgb/rgb_00000.jpg ADDED
data/nyu_demo/rgb/rgb_00050.jpg ADDED
data/nyu_demo/rgb/rgb_00100.jpg ADDED
data/nyu_demo/test_annotations.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"files": [{"cam_in": [518.8579, 519.46961, 325.58245, 253.73617], "rgb": "data/nyu_demo/rgb/rgb_00000.jpg", "depth": "data/nyu_demo/depth/sync_depth_00000.png", "depth_scale": 1000.0}, {"cam_in": [518.8579, 519.46961, 325.58245, 253.73617], "rgb": "data/nyu_demo/rgb/rgb_00050.jpg", "depth": "data/nyu_demo/depth/sync_depth_00050.png", "depth_scale": 1000.0}, {"cam_in": [518.8579, 519.46961, 325.58245, 253.73617], "rgb": "data/nyu_demo/rgb/rgb_00100.jpg", "depth": "data/nyu_demo/depth/sync_depth_00100.png", "depth_scale": 1000.0}]}
data/wild_demo/david-kohler-VFRTXGw1VjU-unsplash.jpg ADDED
data/wild_demo/jonathan-borba-CnthDZXCdoY-unsplash.jpg ADDED
data/wild_demo/randy-fath-G1yhU1Ej-9A-unsplash.jpg ADDED
data_info/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .public_datasets import *
2
+ from .pretrained_weight import *
data_info/pretrained_weight.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ mldb_info={}
3
+
4
+ mldb_info['checkpoint']={
5
+ 'mldb_root': '/mnt/nas/share/home/xugk/ckpt', # NOTE: modify it to the pretrained ckpt root
6
+
7
+ # pretrained weight for convnext
8
+ 'convnext_tiny': 'convnext/convnext_tiny_22k_1k_384.pth',
9
+ 'convnext_small': 'convnext/convnext_small_22k_1k_384.pth',
10
+ 'convnext_base': 'convnext/convnext_base_22k_1k_384.pth',
11
+ 'convnext_large': 'convnext/convnext_large_22k_1k_384.pth',
12
+ 'vit_large': 'vit/dinov2_vitl14_pretrain.pth',
13
+ 'vit_small_reg': 'vit/dinov2_vits14_reg4_pretrain.pth',
14
+ 'vit_large_reg': 'vit/dinov2_vitl14_reg4_pretrain.pth',
15
+ 'vit_giant2_reg': 'vit/dinov2_vitg14_reg4_pretrain.pth',
16
+ }
data_info/public_datasets.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ mldb_info = {}
2
+
3
+ mldb_info['NYU']={
4
+ 'mldb_root': '/mnt/nas/share/home/xugk/data/',
5
+ 'data_root': 'nyu',
6
+ 'test_annotations_path': 'nyu/test_annotation.json',
7
+ }
media/gifs/demo_1.gif ADDED

Git LFS Details

  • SHA256: f07ee050ca8b76991966f45bb74eae6e61e6b11eeb9466b524c6ab5164711d36
  • Pointer size: 133 Bytes
  • Size of remote file: 10.7 MB
media/gifs/demo_12.gif ADDED

Git LFS Details

  • SHA256: c1886d6dff7714d015e6b7c004d88d3014057b1cefe1dc5544fa9bedb81383bc
  • Pointer size: 132 Bytes
  • Size of remote file: 9.41 MB
media/gifs/demo_2.gif ADDED

Git LFS Details

  • SHA256: d11e3f9a11374166fc363a3fed17928957de546a548eccc4c7efa4d9317cf4c5
  • Pointer size: 132 Bytes
  • Size of remote file: 9.02 MB
media/gifs/demo_22.gif ADDED

Git LFS Details

  • SHA256: c56b0785a5991126d02b349f8801980f31b2ef7b661cad07be4888ff42dc29d0
  • Pointer size: 132 Bytes
  • Size of remote file: 6.39 MB
media/screenshots/challenge.PNG ADDED
media/screenshots/page2.png ADDED

Git LFS Details

  • SHA256: c46a332e0f9f868c767f65f70c0fa11ec4f7da2dfe69d47046dff5c37964c171
  • Pointer size: 132 Bytes
  • Size of remote file: 4.35 MB
media/screenshots/pipeline.png ADDED

Git LFS Details

  • SHA256: 19a7b36e83761aae0ecd27e1215e31fded8c9ef3d308734e690456921703f662
  • Pointer size: 131 Bytes
  • Size of remote file: 399 kB
mono/configs/HourglassDecoder/convlarge.0.3_150.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_=[
2
+ '../_base_/models/encoder_decoder/convnext_large.hourglassdecoder.py',
3
+ '../_base_/datasets/_data_base_.py',
4
+ '../_base_/default_runtime.py',
5
+ ]
6
+
7
+ model = dict(
8
+ backbone=dict(
9
+ pretrained=False,
10
+ )
11
+ )
12
+
13
+ # configs of the canonical space
14
+ data_basic=dict(
15
+ canonical_space = dict(
16
+ img_size=(512, 960),
17
+ focal_length=1000.0,
18
+ ),
19
+ depth_range=(0, 1),
20
+ depth_normalize=(0.3, 150),
21
+ crop_size = (544, 1216),
22
+ )
23
+
24
+ batchsize_per_gpu = 2
25
+ thread_per_gpu = 4
mono/configs/HourglassDecoder/test_kitti_convlarge.0.3_150.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_=[
2
+ '../_base_/models/encoder_decoder/convnext_large.hourglassdecoder.py',
3
+ '../_base_/datasets/_data_base_.py',
4
+ '../_base_/default_runtime.py',
5
+ ]
6
+
7
+ model = dict(
8
+ backbone=dict(
9
+ pretrained=False,
10
+ )
11
+ )
12
+
13
+ # configs of the canonical space
14
+ data_basic=dict(
15
+ canonical_space = dict(
16
+ img_size=(512, 960),
17
+ focal_length=1000.0,
18
+ ),
19
+ depth_range=(0, 1),
20
+ depth_normalize=(0.3, 150),
21
+ crop_size = (512, 1088),
22
+ )
23
+
24
+ batchsize_per_gpu = 2
25
+ thread_per_gpu = 4
mono/configs/HourglassDecoder/test_nyu_convlarge.0.3_150.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_=[
2
+ '../_base_/models/encoder_decoder/convnext_large.hourglassdecoder.py',
3
+ '../_base_/datasets/_data_base_.py',
4
+ '../_base_/default_runtime.py',
5
+ ]
6
+
7
+ model = dict(
8
+ backbone=dict(
9
+ pretrained=False,
10
+ )
11
+ )
12
+
13
+ # configs of the canonical space
14
+ data_basic=dict(
15
+ canonical_space = dict(
16
+ img_size=(512, 960),
17
+ focal_length=1000.0,
18
+ ),
19
+ depth_range=(0, 1),
20
+ depth_normalize=(0.3, 150),
21
+ crop_size = (480, 1216),
22
+ )
23
+
24
+ batchsize_per_gpu = 2
25
+ thread_per_gpu = 4
mono/configs/HourglassDecoder/vit.raft5.large.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_=[
2
+ '../_base_/models/encoder_decoder/dino_vit_large_reg.dpt_raft.py',
3
+ '../_base_/datasets/_data_base_.py',
4
+ '../_base_/default_runtime.py',
5
+ ]
6
+
7
+ import numpy as np
8
+ model=dict(
9
+ decode_head=dict(
10
+ type='RAFTDepthNormalDPT5',
11
+ iters=8,
12
+ n_downsample=2,
13
+ detach=False,
14
+ )
15
+ )
16
+
17
+
18
+ max_value = 200
19
+ # configs of the canonical space
20
+ data_basic=dict(
21
+ canonical_space = dict(
22
+ # img_size=(540, 960),
23
+ focal_length=1000.0,
24
+ ),
25
+ depth_range=(0, 1),
26
+ depth_normalize=(0.1, max_value),
27
+ crop_size = (616, 1064), # %28 = 0
28
+ clip_depth_range=(0.1, 200),
29
+ vit_size=(616,1064)
30
+ )
31
+
32
+ batchsize_per_gpu = 1
33
+ thread_per_gpu = 1
mono/configs/HourglassDecoder/vit.raft5.small.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_=[
2
+ '../_base_/models/encoder_decoder/dino_vit_small_reg.dpt_raft.py',
3
+ '../_base_/datasets/_data_base_.py',
4
+ '../_base_/default_runtime.py',
5
+ ]
6
+
7
+ import numpy as np
8
+ model=dict(
9
+ decode_head=dict(
10
+ type='RAFTDepthNormalDPT5',
11
+ iters=4,
12
+ n_downsample=2,
13
+ detach=False,
14
+ )
15
+ )
16
+
17
+
18
+ max_value = 200
19
+ # configs of the canonical space
20
+ data_basic=dict(
21
+ canonical_space = dict(
22
+ # img_size=(540, 960),
23
+ focal_length=1000.0,
24
+ ),
25
+ depth_range=(0, 1),
26
+ depth_normalize=(0.1, max_value),
27
+ crop_size = (616, 1064), # %28 = 0
28
+ clip_depth_range=(0.1, 200),
29
+ vit_size=(616,1064)
30
+ )
31
+
32
+ batchsize_per_gpu = 1
33
+ thread_per_gpu = 1
mono/configs/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
mono/configs/_base_/_data_base_.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # canonical camera setting and basic data setting
2
+ # we set it same as the E300 camera (crop version)
3
+ #
4
+ data_basic=dict(
5
+ canonical_space = dict(
6
+ img_size=(540, 960),
7
+ focal_length=1196.0,
8
+ ),
9
+ depth_range=(0.9, 150),
10
+ depth_normalize=(0.006, 1.001),
11
+ crop_size = (512, 960),
12
+ clip_depth_range=(0.9, 150),
13
+ )
mono/configs/_base_/datasets/_data_base_.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # canonical camera setting and basic data setting
2
+ #
3
+ data_basic=dict(
4
+ canonical_space = dict(
5
+ img_size=(540, 960),
6
+ focal_length=1196.0,
7
+ ),
8
+ depth_range=(0.9, 150),
9
+ depth_normalize=(0.006, 1.001),
10
+ crop_size = (512, 960),
11
+ clip_depth_range=(0.9, 150),
12
+ )
mono/configs/_base_/default_runtime.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+
2
+ load_from = None
3
+ cudnn_benchmark = True
4
+ test_metrics = ['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3','rmse_log', 'log10', 'sq_rel']
mono/configs/_base_/models/backbones/convnext_large.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #_base_ = ['./_model_base_.py',]
2
+
3
+ #'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-large_3rdparty_in21k_20220301-e6e0ea0a.pth'
4
+ model = dict(
5
+ #type='EncoderDecoderAuxi',
6
+ backbone=dict(
7
+ type='convnext_large',
8
+ pretrained=True,
9
+ in_22k=True,
10
+ out_indices=[0, 1, 2, 3],
11
+ drop_path_rate=0.4,
12
+ layer_scale_init_value=1.0,
13
+ checkpoint='data/pretrained_weight_repo/convnext/convnext_large_22k_1k_384.pth',
14
+ prefix='backbones.',
15
+ out_channels=[192, 384, 768, 1536]),
16
+ )
mono/configs/_base_/models/backbones/dino_vit_large.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ model = dict(
2
+ backbone=dict(
3
+ type='vit_large',
4
+ prefix='backbones.',
5
+ out_channels=[1024, 1024, 1024, 1024],
6
+ drop_path_rate = 0.0),
7
+ )
mono/configs/_base_/models/backbones/dino_vit_large_reg.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ model = dict(
2
+ backbone=dict(
3
+ type='vit_large_reg',
4
+ prefix='backbones.',
5
+ out_channels=[1024, 1024, 1024, 1024],
6
+ drop_path_rate = 0.0),
7
+ )
mono/configs/_base_/models/backbones/dino_vit_small_reg.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ model = dict(
2
+ backbone=dict(
3
+ type='vit_small_reg',
4
+ prefix='backbones.',
5
+ out_channels=[384, 384, 384, 384],
6
+ drop_path_rate = 0.0),
7
+ )
mono/configs/_base_/models/encoder_decoder/convnext_large.hourglassdecoder.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ _base_ = ['../backbones/convnext_large.py',]
3
+ model = dict(
4
+ type='DensePredModel',
5
+ decode_head=dict(
6
+ type='HourglassDecoder',
7
+ in_channels=[192, 384, 768, 1536],
8
+ decoder_channel=[128, 128, 256, 512],
9
+ prefix='decode_heads.'),
10
+ )
mono/configs/_base_/models/encoder_decoder/dino_vit_large.dpt_raft.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ _base_ = ['../backbones/dino_vit_large.py']
3
+ model = dict(
4
+ type='DensePredModel',
5
+ decode_head=dict(
6
+ type='RAFTDepthDPT',
7
+ in_channels=[1024, 1024, 1024, 1024],
8
+ use_cls_token=True,
9
+ feature_channels = [256, 512, 1024, 1024], # [2/7, 1/7, 1/14, 1/14]
10
+ decoder_channels = [128, 256, 512, 1024, 1024], # [4/7, 2/7, 1/7, 1/14, 1/14]
11
+ up_scale = 7,
12
+ hidden_channels=[128, 128, 128, 128], # [x_4, x_8, x_16, x_32] [192, 384, 768, 1536]
13
+ n_gru_layers=3,
14
+ n_downsample=2,
15
+ iters=12,
16
+ slow_fast_gru=True,
17
+ corr_radius=4,
18
+ corr_levels=4,
19
+ prefix='decode_heads.'),
20
+ )
mono/configs/_base_/models/encoder_decoder/dino_vit_large_reg.dpt_raft.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ _base_ = ['../backbones/dino_vit_large_reg.py']
3
+ model = dict(
4
+ type='DensePredModel',
5
+ decode_head=dict(
6
+ type='RAFTDepthDPT',
7
+ in_channels=[1024, 1024, 1024, 1024],
8
+ use_cls_token=True,
9
+ feature_channels = [256, 512, 1024, 1024], # [2/7, 1/7, 1/14, 1/14]
10
+ decoder_channels = [128, 256, 512, 1024, 1024], # [4/7, 2/7, 1/7, 1/14, 1/14]
11
+ up_scale = 7,
12
+ hidden_channels=[128, 128, 128, 128], # [x_4, x_8, x_16, x_32] [192, 384, 768, 1536]
13
+ n_gru_layers=3,
14
+ n_downsample=2,
15
+ iters=3,
16
+ slow_fast_gru=True,
17
+ num_register_tokens=4,
18
+ prefix='decode_heads.'),
19
+ )
mono/configs/_base_/models/encoder_decoder/dino_vit_small_reg.dpt_raft.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ _base_ = ['../backbones/dino_vit_small_reg.py']
3
+ model = dict(
4
+ type='DensePredModel',
5
+ decode_head=dict(
6
+ type='RAFTDepthDPT',
7
+ in_channels=[384, 384, 384, 384],
8
+ use_cls_token=True,
9
+ feature_channels = [96, 192, 384, 768], # [2/7, 1/7, 1/14, 1/14]
10
+ decoder_channels = [48, 96, 192, 384, 384], # [-, 1/4, 1/7, 1/14, 1/14]
11
+ up_scale = 7,
12
+ hidden_channels=[48, 48, 48, 48], # [x_4, x_8, x_16, x_32] [1/4, 1/7, 1/14, -]
13
+ n_gru_layers=3,
14
+ n_downsample=2,
15
+ iters=3,
16
+ slow_fast_gru=True,
17
+ num_register_tokens=4,
18
+ prefix='decode_heads.'),
19
+ )
mono/model/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .monodepth_model import DepthModel
2
+ # from .__base_model__ import BaseDepthModel
3
+
4
+
5
+ __all__ = ['DepthModel', 'BaseDepthModel']