{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d0ad30db580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690814587848916610, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOttD3DeQ26b6KSOe7uizRkBp06biunuAAAgD8AAAAAmoE/vM1Ykj9ohPQ8y6iYvqj9u7wjJWo8AAAAAAAAAABNxz2+B0gAPyNb3z1tLq++WEJLvU4bAj0AAAAAAAAAAGZegr2Lf8o+6WGhPnO7er67PAQ+kRiSPQAAAAAAAAAAs/7DvXtMpjkeHZy6HqZcNdYVUbwE2b45AACAPwAAgD+w05k+DBmHvULTyzzmCY27bZbkvuMxQ7wAAIA/AACAP+NOpD4bcUE/ZrFbvjE0sL6xqVU96+tzvgAAAAAAAAAAM3sbvVHzpj3aPt09DnJxvmKng7vOgYi9AAAAAAAAAABmV8c8KYh5uv3BBLXuW1awiQ1eO0LjcTQAAIA/AACAPzOtIbyuPZG6GoE0u+Jsr7V3UdI64txNOgAAgD8AAIA/ZlpVPVKDrrtTKVe8pwWRPGdPGD1rhXW9AACAPwAAgD+GtWU+jo+5vPCCJLu1b5A5N4Ikvp3NVToAAIA/AACAPzOTYTxcLwS6jlJSO2K8XLYDxOm7IDR2ugAAgD8AAIA/RutzPui+kD8VL90+50DAvqu8nj6CPrY9AAAAAAAAAAAmB729XAEFvNR3Mj0+f2C6dilxvXDbMLkAAIA/AACAPwCKqr2PBnO6W7uwukaA8jXCgFG6WrXOOQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7WvR7Z39uMAWyUTRgBjAF0lEdAnmgxcJMQE3V9lChoBkdActvbfgrH2mgHTTwBaAhHQJ5opEF4cFR1fZQoaAZHQHHX+DOC5EtoB01KAWgIR0CeaOXGwRoRdX2UKGgGR0Bv3JQtSQ5naAdNIwFoCEdAnmkBc/t6X3V9lChoBkdAcQ87GNrCWWgHTTsBaAhHQJ5pdoTPBzp1fZQoaAZHQHA/qXBxgiNoB00XAWgIR0CefOvtMPBjdX2UKGgGR0ButU6kqMFVaAdNUQFoCEdAnnzrhvR7Z3V9lChoBkdAcavPiT+vQmgHTQwBaAhHQJ59D5P/JeV1fZQoaAZHQG0Yn27FsHloB00iAWgIR0CefXNucc2jdX2UKGgGR0BxLH0se4kNaAdNJAFoCEdAnn2H2EkB0nV9lChoBkdAbURFKCg9NmgHTSYBaAhHQJ5+dDfFaSt1fZQoaAZHQHG6M4LkS29oB01AAWgIR0CefyIkJKJ3dX2UKGgGR0Bw79wPy08eaAdNQwFoCEdAnn9Q5WBBiXV9lChoBkdAcN1qbSZ0CGgHTV0BaAhHQJ6BSdMCcPR1fZQoaAZHQCroUYbbUPRoB0vbaAhHQJ6DZdhRZU11fZQoaAZHQGvaFEZzgdhoB00dAWgIR0CehL1Gb1AadX2UKGgGR0BuZwElme18aAdNRAFoCEdAnoUvvF3pwHV9lChoBkdAayYKAJ9iMGgHTT8BaAhHQJ6Fb0g8r7R1fZQoaAZHQHB53bZezD5oB00RAWgIR0CehZ/O+qR2dX2UKGgGR0BwBgOnVG1AaAdNQgFoCEdAnoXtTo+wDHV9lChoBkdAb/cpb2USqWgHTTIBaAhHQJ6GHrLQokR1fZQoaAZHQHHvJsKsuFpoB00ZAWgIR0CehmpiZv1ldX2UKGgGR0BxU+f16E8JaAdNKwFoCEdAnoaSSRr8BXV9lChoBkdAclF8MNMGo2gHTTABaAhHQJ6HLa9K28Z1fZQoaAZHQG9JlNDc/MZoB01kAWgIR0CehzfFrEcbdX2UKGgGR0BxowxnFo+OaAdNGwFoCEdAnoeQR9PUKHV9lChoBkdAcJ0Z9/jKgmgHTQ4BaAhHQJ6IB4Uvf0p1fZQoaAZHQHIW5zo2XLNoB00DAmgIR0CeiZjTa0x/dX2UKGgGR0Bt4hZ0Syt3aAdNJQFoCEdAnoq8jzI3i3V9lChoBkdAbkIcz67/XGgHTS4BaAhHQJ6NCvcJtzl1fZQoaAZHQHIqvHLidatoB00oAWgIR0CejgsTWXkYdX2UKGgGR0Bxm4LLIPsiaAdNKAFoCEdAno52fseGPHV9lChoBkdAcFlghr30w2gHTQkBaAhHQJ6OrZqVQhx1fZQoaAZHQHEd80HhS+BoB00QAWgIR0CejyblRxcWdX2UKGgGR0BtPM8eS0SiaAdNMAFoCEdAno85B1LamHV9lChoBkdAcHI8mKIi1WgHTU0BaAhHQJ6QBgAp8Wt1fZQoaAZHQHHtntfG+9JoB00WAWgIR0CekAj1wo9cdX2UKGgGR0BxllH09QoDaAdNIQFoCEdAnpBsKgIyCXV9lChoBkdAcLeOzposZ2gHTWoBaAhHQJ6RVIvrWy11fZQoaAZHQG5FtwBHTZxoB006AWgIR0CekkJYkmhNdX2UKGgGR0Btysa6z3RHaAdNJgFoCEdAnpN+JtSAH3V9lChoBkdAcxr9kjHGTGgHTX8CaAhHQJ6T0DFId2h1fZQoaAZHQHARuwX668RoB01/AWgIR0Cek9oo/iYLdX2UKGgGR0BzCykBS1mbaAdN4wFoCEdAnpU/FWGRFXV9lChoBkdAcbHrDZUT+WgHTUABaAhHQJ6VZAu7HyV1fZQoaAZHQEI+Pgeii7FoB0v8aAhHQJ6WHPdEb5x1fZQoaAZHQHLEjM7lq8FoB00eAWgIR0Cell1PnB+GdX2UKGgGR0BxbuTW5H3DaAdNDgFoCEdAnpcd1MdtEXV9lChoBkdAcr9B55Z8r2gHTTYBaAhHQJ6YLyz5XU91fZQoaAZHQHLhtMsYl6ZoB00cAWgIR0CemLx5LRKIdX2UKGgGR0Bv/ulGgBcSaAdNOwFoCEdAnpjlnVXmvHV9lChoBkdAcFDkvboKUmgHTUwBaAhHQJ6Zf2IwdsB1fZQoaAZHQHI0BxtHhCNoB00rAWgIR0CemZuhK15TdX2UKGgGR0BwrzZBcAzYaAdNKQFoCEdAnpp8IzFdcHV9lChoBkdAb2ZJ7sv7FmgHTQsBaAhHQJ6bvt6X0Gx1fZQoaAZHQG0g/PPcBU9oB004AWgIR0Cem/r+YMOPdX2UKGgGR0BwMks7MgU2aAdNDwFoCEdAnpwvzSThYXV9lChoBkdAcX7CVrylN2gHTSQBaAhHQJ6xUEB8x9J1fZQoaAZHQGw5c2BJ7LNoB01oAWgIR0CeseUH6dlNdX2UKGgGR0BtC2qFRHf/aAdNMwFoCEdAnrLAyM1jzHV9lChoBkdAcHfnx8UmD2gHTRkBaAhHQJ6zARHww0x1fZQoaAZHQG3m06xPfsNoB00/AWgIR0Ces3E4//vOdX2UKGgGR0Bwolz/6wdKaAdNOgFoCEdAnrV9H+ZPVXV9lChoBkdAcWOaBZpztGgHTZ8BaAhHQJ61qP2f0291fZQoaAZHQHBK61XvH95oB007AWgIR0CetizlLeyidX2UKGgGR0Bwyoc7yQPqaAdNTwFoCEdAnrcSml67d3V9lChoBkdAcPaOcDr7f2gHTTYBaAhHQJ64BkK/mDF1fZQoaAZHQFFvN1hb4ahoB00JAWgIR0CeuATQVsUJdX2UKGgGR0Bw5w5Jbt7baAdNFQFoCEdAnrgxcE/0NHV9lChoBkdAcmiXWvr4WWgHTZoCaAhHQJ64iNR3u/l1fZQoaAZHQHC2Ef1YhdNoB01qAWgIR0CeuML7GecydX2UKGgGR0BwK4IgNgBtaAdNTgFoCEdAnrpXxaxHG3V9lChoBkdAcAbtHhCMP2gHTRIBaAhHQJ68f544ZMt1fZQoaAZHQG9M3vx6OYJoB004AWgIR0CevMS0Sh8IdX2UKGgGR0BxIXnkkrwwaAdNSwFoCEdAnrziWZ7Xx3V9lChoBkdAcGf2WIGhVWgHTSMBaAhHQJ69e1OTJQt1fZQoaAZHQHJZceKbaytoB00XAmgIR0CevmOAy2x6dX2UKGgGR0Byql3A2ycDaAdNBwFoCEdAnr5tcKPXCnV9lChoBkdAcHAJpWV/t2gHTRQBaAhHQJ6++sRxtHh1fZQoaAZHQHJfSjUNKAdoB01pAWgIR0CevycWCVbBdX2UKGgGR0BwXzP5YYBOaAdNRwFoCEdAnsEwPVd5ZHV9lChoBkdAb4opeeFtbmgHTRkBaAhHQJ7BgjeKsMl1fZQoaAZHQG7yqptJnQJoB00UAWgIR0Cewbu5SWJKdX2UKGgGR0BwmD1UVBUraAdNOwFoCEdAnsKAjdHlO3V9lChoBkdAbfWDf3vhImgHTTkBaAhHQJ7DQWAPNFB1fZQoaAZHQHCKGzSkTHtoB010AWgIR0CexGpJf6XTdX2UKGgGR0BxQkVEd/8VaAdNEAFoCEdAnsWrwrlNlHV9lChoBkdAcPjFiay8jGgHTWoBaAhHQJ7GuzPa+N91fZQoaAZHQHDGJcLSeAdoB00SAWgIR0Cex+Q/oq0/dX2UKGgGR0ByhkgcLjPwaAdNQwFoCEdAnsgEyYXwb3V9lChoBkdAa9H6By0a62gHTWQBaAhHQJ7JOJiy6c11fZQoaAZHQGvOGCiAUcpoB00qAWgIR0Ceycsrd30PdX2UKGgGR0By/zWRRuTBaAdNAgFoCEdAnsqmHck+o3V9lChoBkdAbBmJdB0IT2gHTRcBaAhHQJ7L3gn+hoN1fZQoaAZHQG4H1HFxXGRoB01tAWgIR0CezFSamXPadX2UKGgGR0BuSLw4KhL5aAdNIQFoCEdAns1xwZOzp3V9lChoBkdAcaOftQbdamgHTXIBaAhHQJ7Q1RLsa891fZQoaAZHQHBQG4I8hcJoB01EAWgIR0Ce0uQCCBf8dX2UKGgGR0BxbPijtXxOaAdNmQFoCEdAntXfSQYDT3V9lChoBkdAchVlolD4QGgHTSwCaAhHQJ7WCxC6Ymd1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}