--- language: - en - zh license: apache-2.0 library_name: transformers tags: - multimodal - vqa - text - audio - chat datasets: - zeroMN/nlp_corpus_zh - zeroMN/hanlp_date-zh - Johnson8187/Chinese_Multi-Emotion_Dialogue_Dataset - clapAI/MultiLingualSentiment - shareAI/ShareGPT-Chinese-English-90k - wikimedia/wikipedia - google/code_x_glue_tt_text_to_text - silk-road/ChatHaruhi-54K-Role-Playing-Dialogue - yentinglin/TaiwanChat - liswei/rm-static-zhTW - yys/OpenOrca-Chinese - Fumika/Wikinews-multilingual - aqweteddy/Taiwan-Curlture-MCQ - Nexdata/Chinese_Mandarin_Multi-emotional_Synthesis_Corpus - Nexdata/Chinese_Mandarin_Entertainment_anchor_Style_Multi-emotional_Synthesis_Corpus - voices365/102_Hours_High_Quality_Chinese_Audio_Dataset_For_Speech_Synthesis_Female_Samples - voices365/Chinese_Female_001VoiceArtist_40Hours_High_Quality_Voice_Dataset - Nexdata/Mandarin_Spontaneous_Speech_Data - speechbrain/common_language - hello2mao/Chinese_Audio_Resource - a686d380/h-corpus-2023 - synthetic-dataset - zeroMN/AVEdate metrics: - accuracy - bleu - wer model-index: - name: AutoModel results: - task: type: vqa name: Visual Question Answering dataset: type: synthetic-dataset name: Synthetic Multimodal Dataset split: test metrics: - type: accuracy value: 85 pipeline_tag: text-generation --- # Model Card for AutoModel -AutoModel 是一个多模态模型,支持图像、文本和语音输入... --- ### **3. 提供可下载文件** - **模型权重文件**(如 `AutoModel.pth`)。 - **配置文件**(如 `config.json`)。 - **依赖文件**(如 `requirements.txt`)。 - **运行脚本**(如 `run_model.py`)。 用户可以直接下载这些文件并运行模型。 ```python 1. import torch from model import AutoModel, Config 2. config = Config(config_file="path/to/config.json") model = AutoModel(config) model.load_state_dict(torch.load("path/to/AutoModel.pth")) model.eval() ``` ### **4. 自动运行模型的限制** Hugging Face Hub 本身不能自动运行上传的模型,但通过 `Spaces` 提供的接口可以解决这一问题。`Spaces` 能够运行托管的推理服务,让用户无需本地配置即可测试模型。 --- ### **推荐方法** - **快速测试**:使用 Hugging Face `Spaces` 创建在线演示。 - **高级使用**:在模型卡中提供完整的运行说明,允许用户本地运行模型。 ##通过这些方式,您可以让模型仓库既支持在线运行,也便于用户离线部署。 - ```python ``` ### Model Description -- AutoModel is a multimodal deep learning model designed to process and fuse data from three different modalities: images, text, and audio. It supports a variety of downstream tasks, including: Visual Question Answering (VQA) Captioning Information Retrieval Automatic Speech Recognition (ASR) Real-time ASR -- -- The model employs separate encoders for each modality (image, text, audio) and combines their outputs through a fusion layer. It is built with PyTorch and leverages a modular architecture for flexible fine-tuning and deployment. -- **Developed by:** Independent researcher **Funded by :** Self-funded **Shared by :** Independent researcher **Model type:** Multimodal **Language(s) (NLP):** English zh **License:** Apache-2.0 **Finetuned from model :** None ### Model Sources **Repository:** [GitHub Repository Placeholder](https://github.com/user/repository) *(Add link to code repository)* **Paper [optional]:** **Demo [optional]:** ## How to use the Model -- 1. Clone the repository: ```bash git clone https://huggingface.co/zeroMN/AutoModel ```python 2. pip install torch transformers 3. import torch from model import AutoModel, Config 4. config = Config(config_file="path/to/config.json") model = AutoModel(config) model.load_state_dict(torch.load("path/to/AutoModel.pth")) model.eval() 5. image = torch.randn(1, 3, 224, 224) text = torch.randn(1, 512, 768) audio = torch.randn(1, 16000) outputs = model(image, text, audio) print(outputs) ``` ### Direct Use -- AutoModel is intended for research and application development in multimodal tasks. It can process and integrate data from multiple input types (images, text, audio) for tasks like VQA, captioning, and ASR. -- ### Downstream Use [optional] -- AutoModel can be fine-tuned on specific datasets to optimize its performance for custom tasks in various domains, such as medical image-text analysis, video-audio subtitling, and real-time speech-to-text systems. -- ### Out-of-Scope Use -- - Tasks outside its multimodal capabilities (e.g., pure text processing without fusion). - Non-English language tasks (unless retrained with a multilingual tokenizer and data). -- ## Bias, Risks, and Limitations -- ### Recommendations -- Users should be aware of potential biases in pre-trained encoders and datasets, such as demographic biases in images, text, or speech. Before deployment, it is recommended to evaluate the model's fairness and robustness in real-world settings. -- ## How to train the Model -- ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer from torch.utils.data import Dataset, DataLoader import datasets # 加载数据集 dataset_names = [ "Johnson8187/Chinese_Multi-Emotion_Dialogue_Dataset", "clapAI/MultiLingualSentiment", "shareAI/ShareGPT-Chinese-English-90k", "wikimedia/wikipedia", "google/code_x_glue_tt_text_to_text", "silk-road/ChatHaruhi-54K-Role-Playing-Dialogue", "yentinglin/TaiwanChat", "liswei/rm-static-zhTW", "yys/OpenOrca-Chinese", "Fumika/Wikinews-multilingual", "aqweteddy/Taiwan-Curlture-MCQ", "Nexdata/Chinese_Mandarin_Multi-emotional_Synthesis_Corpus", "Nexdata/Chinese_Mandarin_Entertainment_anchor_Style_Multi-emotional_Synthesis_Corpus", "voices365/102_Hours_High_Quality_Chinese_Audio_Dataset_For_Speech_Synthesis_Female_Samples", "voices365/Chinese_Female_001VoiceArtist_40Hours_High_Quality_Voice_Dataset", "Nexdata/Mandarin_Spontaneous_Speech_Data", "speechbrain/common_language", "hello2mao/Chinese_Audio_Resource" ] # 加载模型 model_name = "zeroMN/zeroSG" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # 加载数据 datasets_list = [] for dataset_name in dataset_names: dataset = datasets.load_dataset(dataset_name) datasets_list.append(dataset) # 创建数据加载器 batch_size = 32 data_loader = DataLoader(datasets_list, batch_size=batch_size, shuffle=True) # 定义训练参数 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-5) # 训练模型 for epoch in range(5): model.train() total_loss = 0 for batch in data_loader: input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) labels = batch["labels"].to(device) optimizer.zero_grad() outputs = model(input_ids, attention_mask=attention_mask, labels=labels) loss = criterion(outputs, labels) loss.backward() optimizer.step() total_loss += loss.item() print(f"Epoch {epoch+1}, Loss: {total_loss / len(data_loader)}") ```