zeroix07 commited on
Commit
5d3f7ef
1 Parent(s): e253b1b

Add SetFit ABSA model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: dan lembut, pai yang dibawa pulang menjadi basah di:Karena kulitnya yang tipis
13
+ dan lembut, pai yang dibawa pulang menjadi basah di dalam kotaknya.
14
+ - text: mungkin untuk mengkritik makanannya tersebut.:Dari makanan pembuka yang kami
15
+ makan, dim sum, dan variasi makanannya lainnya, tidak mungkin untuk mengkritik
16
+ makanannya tersebut.
17
+ - text: di sana untuk Spesial Sabtu Malam Setengah Harga, tetapi Selasa:Saya tidak
18
+ ada di sana untuk Spesial Sabtu Malam Setengah Harga, tetapi Selasa Malam.
19
+ - text: dan mengatur ulang meja untuk enam orang:Di sebelah kanan saya, nyonya rumah
20
+ berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba
21
+ membersihkan dan mengatur ulang meja untuk enam orang.
22
+ - text: Jika Anda menyukai makanannya dan nilai yang:Jika Anda menyukai makanannya
23
+ dan nilai yang Anda dapatkan dari beberapa restoran Chinatown, ini bukan tempat
24
+ untuk Anda.
25
+ pipeline_tag: text-classification
26
+ inference: false
27
+ model-index:
28
+ - name: SetFit Polarity Model
29
+ results:
30
+ - task:
31
+ type: text-classification
32
+ name: Text Classification
33
+ dataset:
34
+ name: Unknown
35
+ type: unknown
36
+ split: test
37
+ metrics:
38
+ - type: accuracy
39
+ value: 0.6568627450980392
40
+ name: Accuracy
41
+ ---
42
+
43
+ # SetFit Polarity Model
44
+
45
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
46
+
47
+ The model has been trained using an efficient few-shot learning technique that involves:
48
+
49
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
50
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
51
+
52
+ This model was trained within the context of a larger system for ABSA, which looks like so:
53
+
54
+ 1. Use a spaCy model to select possible aspect span candidates.
55
+ 2. Use a SetFit model to filter these possible aspect span candidates.
56
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
57
+
58
+ ## Model Details
59
+
60
+ ### Model Description
61
+ - **Model Type:** SetFit
62
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
63
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
64
+ - **spaCy Model:** id_core_news_trf
65
+ - **SetFitABSA Aspect Model:** [zeroix07/indo-setfit-absa-model-aspect](https://huggingface.co/zeroix07/indo-setfit-absa-model-aspect)
66
+ - **SetFitABSA Polarity Model:** [zeroix07/indo-setfit-absa-model-polarity](https://huggingface.co/zeroix07/indo-setfit-absa-model-polarity)
67
+ - **Maximum Sequence Length:** 8192 tokens
68
+ - **Number of Classes:** 3 classes
69
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
70
+ <!-- - **Language:** Unknown -->
71
+ <!-- - **License:** Unknown -->
72
+
73
+ ### Model Sources
74
+
75
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
76
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
77
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
78
+
79
+ ### Model Labels
80
+ | Label | Examples |
81
+ |:--------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
82
+ | positif | <ul><li>'faktor penebusan adalah makanannya, yang berada:Agar benar-benar adil, satu-satunya faktor penebusan adalah makanannya, yang berada di atas rata-rata, tetapi tidak dapat menutupi semua kekurangan Teodora lainnya.'</li><li>'makanannya benar-benar luar biasa:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'</li><li>'biasa, dengan dapur yang sangat mumpuni:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'</li></ul> |
83
+ | netral | <ul><li>'itu ada di menu atau tidak.:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'</li><li>'bisa mencicipi kedua daging tersebut).:Favorit kami yang disepakati adalah orrechiete dengan sosis dan ayam (biasanya para pelayan berbaik hati membagi hidangan menjadi dua sehingga Anda bisa mencicipi kedua daging tersebut).'</li><li>'jika Anda suka pizza berkulit tipis.:Pizza adalah yang terbaik jika Anda suka pizza berkulit tipis.'</li></ul> |
84
+ | negatif | <ul><li>'yang masuk ke koki.:Semua uang digunakan untuk dekorasi interior, tidak ada satupun yang masuk ke koki.'</li><li>'masuk akal meskipun layanannya buruk.:Harganya masuk akal meskipun layanannya buruk.'</li><li>'mayones, lupa roti panggang kami, meninggalkan:Mereka tidak memiliki mayones, lupa roti panggang kami, meninggalkan bahan-bahan (yaitu keju dalam telur dadar), di bawah suhu panas dan daging terlalu matang sehingga hancur di piring ketika Anda menyentuhnya.'</li></ul> |
85
+
86
+ ## Evaluation
87
+
88
+ ### Metrics
89
+ | Label | Accuracy |
90
+ |:--------|:---------|
91
+ | **all** | 0.6569 |
92
+
93
+ ## Uses
94
+
95
+ ### Direct Use for Inference
96
+
97
+ First install the SetFit library:
98
+
99
+ ```bash
100
+ pip install setfit
101
+ ```
102
+
103
+ Then you can load this model and run inference.
104
+
105
+ ```python
106
+ from setfit import AbsaModel
107
+
108
+ # Download from the 🤗 Hub
109
+ model = AbsaModel.from_pretrained(
110
+ "zeroix07/indo-setfit-absa-model-aspect",
111
+ "zeroix07/indo-setfit-absa-model-polarity",
112
+ )
113
+ # Run inference
114
+ preds = model("The food was great, but the venue is just way too busy.")
115
+ ```
116
+
117
+ <!--
118
+ ### Downstream Use
119
+
120
+ *List how someone could finetune this model on their own dataset.*
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Set Metrics
144
+ | Training set | Min | Median | Max |
145
+ |:-------------|:----|:--------|:----|
146
+ | Word count | 5 | 21.6519 | 45 |
147
+
148
+ | Label | Training Sample Count |
149
+ |:--------|:----------------------|
150
+ | konflik | 0 |
151
+ | negatif | 48 |
152
+ | netral | 69 |
153
+ | positif | 64 |
154
+
155
+ ### Training Hyperparameters
156
+ - batch_size: (6, 6)
157
+ - num_epochs: (1, 16)
158
+ - max_steps: -1
159
+ - sampling_strategy: oversampling
160
+ - body_learning_rate: (2e-05, 1e-05)
161
+ - head_learning_rate: 0.01
162
+ - loss: CosineSimilarityLoss
163
+ - distance_metric: cosine_distance
164
+ - margin: 0.25
165
+ - end_to_end: False
166
+ - use_amp: True
167
+ - warmup_proportion: 0.1
168
+ - seed: 42
169
+ - eval_max_steps: -1
170
+ - load_best_model_at_end: False
171
+
172
+ ### Training Results
173
+ | Epoch | Step | Training Loss | Validation Loss |
174
+ |:------:|:----:|:-------------:|:---------------:|
175
+ | 0.0003 | 1 | 0.2985 | - |
176
+ | 0.0139 | 50 | 0.14 | - |
177
+ | 0.0278 | 100 | 0.0913 | - |
178
+ | 0.0417 | 150 | 0.0447 | - |
179
+ | 0.0556 | 200 | 0.0932 | - |
180
+ | 0.0694 | 250 | 0.2864 | - |
181
+ | 0.0833 | 300 | 0.2556 | - |
182
+ | 0.0972 | 350 | 0.1447 | - |
183
+ | 0.1111 | 400 | 0.0084 | - |
184
+ | 0.125 | 450 | 0.003 | - |
185
+ | 0.1389 | 500 | 0.0035 | - |
186
+ | 0.1528 | 550 | 0.0074 | - |
187
+ | 0.1667 | 600 | 0.0031 | - |
188
+ | 0.1806 | 650 | 0.0014 | - |
189
+ | 0.1944 | 700 | 0.002 | - |
190
+ | 0.2083 | 750 | 0.0006 | - |
191
+ | 0.2222 | 800 | 0.0005 | - |
192
+ | 0.2361 | 850 | 0.0005 | - |
193
+ | 0.25 | 900 | 0.0005 | - |
194
+ | 0.2639 | 950 | 0.0015 | - |
195
+ | 0.2778 | 1000 | 0.0007 | - |
196
+ | 0.2917 | 1050 | 0.0006 | - |
197
+ | 0.3056 | 1100 | 0.0006 | - |
198
+ | 0.3194 | 1150 | 0.0007 | - |
199
+ | 0.3333 | 1200 | 0.0091 | - |
200
+ | 0.3472 | 1250 | 0.0004 | - |
201
+ | 0.3611 | 1300 | 0.0003 | - |
202
+ | 0.375 | 1350 | 0.0005 | - |
203
+ | 0.3889 | 1400 | 0.0006 | - |
204
+ | 0.4028 | 1450 | 0.0434 | - |
205
+ | 0.4167 | 1500 | 0.0006 | - |
206
+ | 0.4306 | 1550 | 0.0003 | - |
207
+ | 0.4444 | 1600 | 0.0005 | - |
208
+ | 0.4583 | 1650 | 0.0004 | - |
209
+ | 0.4722 | 1700 | 0.0021 | - |
210
+ | 0.4861 | 1750 | 0.0012 | - |
211
+ | 0.5 | 1800 | 0.0004 | - |
212
+ | 0.5139 | 1850 | 0.0005 | - |
213
+ | 0.5278 | 1900 | 0.0004 | - |
214
+ | 0.5417 | 1950 | 0.0003 | - |
215
+ | 0.5556 | 2000 | 0.0003 | - |
216
+ | 0.5694 | 2050 | 0.0005 | - |
217
+ | 0.5833 | 2100 | 0.0004 | - |
218
+ | 0.5972 | 2150 | 0.0004 | - |
219
+ | 0.6111 | 2200 | 0.0005 | - |
220
+ | 0.625 | 2250 | 0.0004 | - |
221
+ | 0.6389 | 2300 | 0.0005 | - |
222
+ | 0.6528 | 2350 | 0.0004 | - |
223
+ | 0.6667 | 2400 | 0.0003 | - |
224
+ | 0.6806 | 2450 | 0.0004 | - |
225
+ | 0.6944 | 2500 | 0.0007 | - |
226
+ | 0.7083 | 2550 | 0.0003 | - |
227
+ | 0.7222 | 2600 | 0.0003 | - |
228
+ | 0.7361 | 2650 | 0.101 | - |
229
+ | 0.75 | 2700 | 0.0003 | - |
230
+ | 0.7639 | 2750 | 0.0004 | - |
231
+ | 0.7778 | 2800 | 0.0004 | - |
232
+ | 0.7917 | 2850 | 0.0003 | - |
233
+ | 0.8056 | 2900 | 0.0004 | - |
234
+ | 0.8194 | 2950 | 0.0899 | - |
235
+ | 0.8333 | 3000 | 0.0003 | - |
236
+ | 0.8472 | 3050 | 0.0002 | - |
237
+ | 0.8611 | 3100 | 0.0002 | - |
238
+ | 0.875 | 3150 | 0.0003 | - |
239
+ | 0.8889 | 3200 | 0.0002 | - |
240
+ | 0.9028 | 3250 | 0.0003 | - |
241
+ | 0.9167 | 3300 | 0.0004 | - |
242
+ | 0.9306 | 3350 | 0.0003 | - |
243
+ | 0.9444 | 3400 | 0.0003 | - |
244
+ | 0.9583 | 3450 | 0.0547 | - |
245
+ | 0.9722 | 3500 | 0.0003 | - |
246
+ | 0.9861 | 3550 | 0.0004 | - |
247
+ | 1.0 | 3600 | 0.0002 | - |
248
+
249
+ ### Framework Versions
250
+ - Python: 3.10.13
251
+ - SetFit: 1.0.3
252
+ - Sentence Transformers: 2.7.0
253
+ - spaCy: 3.7.4
254
+ - Transformers: 4.36.2
255
+ - PyTorch: 2.1.2
256
+ - Datasets: 2.18.0
257
+ - Tokenizers: 0.15.2
258
+
259
+ ## Citation
260
+
261
+ ### BibTeX
262
+ ```bibtex
263
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
264
+ doi = {10.48550/ARXIV.2209.11055},
265
+ url = {https://arxiv.org/abs/2209.11055},
266
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
267
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
268
+ title = {Efficient Few-Shot Learning Without Prompts},
269
+ publisher = {arXiv},
270
+ year = {2022},
271
+ copyright = {Creative Commons Attribution 4.0 International}
272
+ }
273
+ ```
274
+
275
+ <!--
276
+ ## Glossary
277
+
278
+ *Clearly define terms in order to be accessible across audiences.*
279
+ -->
280
+
281
+ <!--
282
+ ## Model Card Authors
283
+
284
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
285
+ -->
286
+
287
+ <!--
288
+ ## Model Card Contact
289
+
290
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
291
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "firqaaa/indo-setfit-absa-bert-base-restaurants-polarity",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.36.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.33.0",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "konflik",
4
+ "negatif",
5
+ "netral",
6
+ "positif"
7
+ ],
8
+ "normalize_embeddings": false,
9
+ "spacy_model": "id_core_news_trf",
10
+ "span_context": 3
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d08aa9aa35ffeee36d8a38eca3165d140a40691e03fe9f04407a188acf01cec
3
+ size 2271064456
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:555962a8fdc925ff94af2b58e33340dc040a114781cd1089dbbb21ffe528915b
3
+ size 25503
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1af481bd08ed9347cf9d3d07c24e5de75a10983819de076436400609e6705686
3
+ size 17083075
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 8192,
50
+ "model_max_length": 8192,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }