Add SetFit ABSA model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +291 -0
- config.json +28 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +11 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- absa
|
6 |
+
- sentence-transformers
|
7 |
+
- text-classification
|
8 |
+
- generated_from_setfit_trainer
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
widget:
|
12 |
+
- text: dan lembut, pai yang dibawa pulang menjadi basah di:Karena kulitnya yang tipis
|
13 |
+
dan lembut, pai yang dibawa pulang menjadi basah di dalam kotaknya.
|
14 |
+
- text: mungkin untuk mengkritik makanannya tersebut.:Dari makanan pembuka yang kami
|
15 |
+
makan, dim sum, dan variasi makanannya lainnya, tidak mungkin untuk mengkritik
|
16 |
+
makanannya tersebut.
|
17 |
+
- text: di sana untuk Spesial Sabtu Malam Setengah Harga, tetapi Selasa:Saya tidak
|
18 |
+
ada di sana untuk Spesial Sabtu Malam Setengah Harga, tetapi Selasa Malam.
|
19 |
+
- text: dan mengatur ulang meja untuk enam orang:Di sebelah kanan saya, nyonya rumah
|
20 |
+
berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba
|
21 |
+
membersihkan dan mengatur ulang meja untuk enam orang.
|
22 |
+
- text: Jika Anda menyukai makanannya dan nilai yang:Jika Anda menyukai makanannya
|
23 |
+
dan nilai yang Anda dapatkan dari beberapa restoran Chinatown, ini bukan tempat
|
24 |
+
untuk Anda.
|
25 |
+
pipeline_tag: text-classification
|
26 |
+
inference: false
|
27 |
+
model-index:
|
28 |
+
- name: SetFit Polarity Model
|
29 |
+
results:
|
30 |
+
- task:
|
31 |
+
type: text-classification
|
32 |
+
name: Text Classification
|
33 |
+
dataset:
|
34 |
+
name: Unknown
|
35 |
+
type: unknown
|
36 |
+
split: test
|
37 |
+
metrics:
|
38 |
+
- type: accuracy
|
39 |
+
value: 0.6568627450980392
|
40 |
+
name: Accuracy
|
41 |
+
---
|
42 |
+
|
43 |
+
# SetFit Polarity Model
|
44 |
+
|
45 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
|
46 |
+
|
47 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
48 |
+
|
49 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
50 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
51 |
+
|
52 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
53 |
+
|
54 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
55 |
+
2. Use a SetFit model to filter these possible aspect span candidates.
|
56 |
+
3. **Use this SetFit model to classify the filtered aspect span candidates.**
|
57 |
+
|
58 |
+
## Model Details
|
59 |
+
|
60 |
+
### Model Description
|
61 |
+
- **Model Type:** SetFit
|
62 |
+
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
63 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
64 |
+
- **spaCy Model:** id_core_news_trf
|
65 |
+
- **SetFitABSA Aspect Model:** [zeroix07/indo-setfit-absa-model-aspect](https://huggingface.co/zeroix07/indo-setfit-absa-model-aspect)
|
66 |
+
- **SetFitABSA Polarity Model:** [zeroix07/indo-setfit-absa-model-polarity](https://huggingface.co/zeroix07/indo-setfit-absa-model-polarity)
|
67 |
+
- **Maximum Sequence Length:** 8192 tokens
|
68 |
+
- **Number of Classes:** 3 classes
|
69 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
70 |
+
<!-- - **Language:** Unknown -->
|
71 |
+
<!-- - **License:** Unknown -->
|
72 |
+
|
73 |
+
### Model Sources
|
74 |
+
|
75 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
76 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
77 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
78 |
+
|
79 |
+
### Model Labels
|
80 |
+
| Label | Examples |
|
81 |
+
|:--------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
82 |
+
| positif | <ul><li>'faktor penebusan adalah makanannya, yang berada:Agar benar-benar adil, satu-satunya faktor penebusan adalah makanannya, yang berada di atas rata-rata, tetapi tidak dapat menutupi semua kekurangan Teodora lainnya.'</li><li>'makanannya benar-benar luar biasa:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'</li><li>'biasa, dengan dapur yang sangat mumpuni:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'</li></ul> |
|
83 |
+
| netral | <ul><li>'itu ada di menu atau tidak.:makanannya benar-benar luar biasa, dengan dapur yang sangat mumpuni yang dengan bangga akan menyiapkan apa pun yang Anda ingin makan, baik itu ada di menu atau tidak.'</li><li>'bisa mencicipi kedua daging tersebut).:Favorit kami yang disepakati adalah orrechiete dengan sosis dan ayam (biasanya para pelayan berbaik hati membagi hidangan menjadi dua sehingga Anda bisa mencicipi kedua daging tersebut).'</li><li>'jika Anda suka pizza berkulit tipis.:Pizza adalah yang terbaik jika Anda suka pizza berkulit tipis.'</li></ul> |
|
84 |
+
| negatif | <ul><li>'yang masuk ke koki.:Semua uang digunakan untuk dekorasi interior, tidak ada satupun yang masuk ke koki.'</li><li>'masuk akal meskipun layanannya buruk.:Harganya masuk akal meskipun layanannya buruk.'</li><li>'mayones, lupa roti panggang kami, meninggalkan:Mereka tidak memiliki mayones, lupa roti panggang kami, meninggalkan bahan-bahan (yaitu keju dalam telur dadar), di bawah suhu panas dan daging terlalu matang sehingga hancur di piring ketika Anda menyentuhnya.'</li></ul> |
|
85 |
+
|
86 |
+
## Evaluation
|
87 |
+
|
88 |
+
### Metrics
|
89 |
+
| Label | Accuracy |
|
90 |
+
|:--------|:---------|
|
91 |
+
| **all** | 0.6569 |
|
92 |
+
|
93 |
+
## Uses
|
94 |
+
|
95 |
+
### Direct Use for Inference
|
96 |
+
|
97 |
+
First install the SetFit library:
|
98 |
+
|
99 |
+
```bash
|
100 |
+
pip install setfit
|
101 |
+
```
|
102 |
+
|
103 |
+
Then you can load this model and run inference.
|
104 |
+
|
105 |
+
```python
|
106 |
+
from setfit import AbsaModel
|
107 |
+
|
108 |
+
# Download from the 🤗 Hub
|
109 |
+
model = AbsaModel.from_pretrained(
|
110 |
+
"zeroix07/indo-setfit-absa-model-aspect",
|
111 |
+
"zeroix07/indo-setfit-absa-model-polarity",
|
112 |
+
)
|
113 |
+
# Run inference
|
114 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
115 |
+
```
|
116 |
+
|
117 |
+
<!--
|
118 |
+
### Downstream Use
|
119 |
+
|
120 |
+
*List how someone could finetune this model on their own dataset.*
|
121 |
+
-->
|
122 |
+
|
123 |
+
<!--
|
124 |
+
### Out-of-Scope Use
|
125 |
+
|
126 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
127 |
+
-->
|
128 |
+
|
129 |
+
<!--
|
130 |
+
## Bias, Risks and Limitations
|
131 |
+
|
132 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
133 |
+
-->
|
134 |
+
|
135 |
+
<!--
|
136 |
+
### Recommendations
|
137 |
+
|
138 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
139 |
+
-->
|
140 |
+
|
141 |
+
## Training Details
|
142 |
+
|
143 |
+
### Training Set Metrics
|
144 |
+
| Training set | Min | Median | Max |
|
145 |
+
|:-------------|:----|:--------|:----|
|
146 |
+
| Word count | 5 | 21.6519 | 45 |
|
147 |
+
|
148 |
+
| Label | Training Sample Count |
|
149 |
+
|:--------|:----------------------|
|
150 |
+
| konflik | 0 |
|
151 |
+
| negatif | 48 |
|
152 |
+
| netral | 69 |
|
153 |
+
| positif | 64 |
|
154 |
+
|
155 |
+
### Training Hyperparameters
|
156 |
+
- batch_size: (6, 6)
|
157 |
+
- num_epochs: (1, 16)
|
158 |
+
- max_steps: -1
|
159 |
+
- sampling_strategy: oversampling
|
160 |
+
- body_learning_rate: (2e-05, 1e-05)
|
161 |
+
- head_learning_rate: 0.01
|
162 |
+
- loss: CosineSimilarityLoss
|
163 |
+
- distance_metric: cosine_distance
|
164 |
+
- margin: 0.25
|
165 |
+
- end_to_end: False
|
166 |
+
- use_amp: True
|
167 |
+
- warmup_proportion: 0.1
|
168 |
+
- seed: 42
|
169 |
+
- eval_max_steps: -1
|
170 |
+
- load_best_model_at_end: False
|
171 |
+
|
172 |
+
### Training Results
|
173 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
174 |
+
|:------:|:----:|:-------------:|:---------------:|
|
175 |
+
| 0.0003 | 1 | 0.2985 | - |
|
176 |
+
| 0.0139 | 50 | 0.14 | - |
|
177 |
+
| 0.0278 | 100 | 0.0913 | - |
|
178 |
+
| 0.0417 | 150 | 0.0447 | - |
|
179 |
+
| 0.0556 | 200 | 0.0932 | - |
|
180 |
+
| 0.0694 | 250 | 0.2864 | - |
|
181 |
+
| 0.0833 | 300 | 0.2556 | - |
|
182 |
+
| 0.0972 | 350 | 0.1447 | - |
|
183 |
+
| 0.1111 | 400 | 0.0084 | - |
|
184 |
+
| 0.125 | 450 | 0.003 | - |
|
185 |
+
| 0.1389 | 500 | 0.0035 | - |
|
186 |
+
| 0.1528 | 550 | 0.0074 | - |
|
187 |
+
| 0.1667 | 600 | 0.0031 | - |
|
188 |
+
| 0.1806 | 650 | 0.0014 | - |
|
189 |
+
| 0.1944 | 700 | 0.002 | - |
|
190 |
+
| 0.2083 | 750 | 0.0006 | - |
|
191 |
+
| 0.2222 | 800 | 0.0005 | - |
|
192 |
+
| 0.2361 | 850 | 0.0005 | - |
|
193 |
+
| 0.25 | 900 | 0.0005 | - |
|
194 |
+
| 0.2639 | 950 | 0.0015 | - |
|
195 |
+
| 0.2778 | 1000 | 0.0007 | - |
|
196 |
+
| 0.2917 | 1050 | 0.0006 | - |
|
197 |
+
| 0.3056 | 1100 | 0.0006 | - |
|
198 |
+
| 0.3194 | 1150 | 0.0007 | - |
|
199 |
+
| 0.3333 | 1200 | 0.0091 | - |
|
200 |
+
| 0.3472 | 1250 | 0.0004 | - |
|
201 |
+
| 0.3611 | 1300 | 0.0003 | - |
|
202 |
+
| 0.375 | 1350 | 0.0005 | - |
|
203 |
+
| 0.3889 | 1400 | 0.0006 | - |
|
204 |
+
| 0.4028 | 1450 | 0.0434 | - |
|
205 |
+
| 0.4167 | 1500 | 0.0006 | - |
|
206 |
+
| 0.4306 | 1550 | 0.0003 | - |
|
207 |
+
| 0.4444 | 1600 | 0.0005 | - |
|
208 |
+
| 0.4583 | 1650 | 0.0004 | - |
|
209 |
+
| 0.4722 | 1700 | 0.0021 | - |
|
210 |
+
| 0.4861 | 1750 | 0.0012 | - |
|
211 |
+
| 0.5 | 1800 | 0.0004 | - |
|
212 |
+
| 0.5139 | 1850 | 0.0005 | - |
|
213 |
+
| 0.5278 | 1900 | 0.0004 | - |
|
214 |
+
| 0.5417 | 1950 | 0.0003 | - |
|
215 |
+
| 0.5556 | 2000 | 0.0003 | - |
|
216 |
+
| 0.5694 | 2050 | 0.0005 | - |
|
217 |
+
| 0.5833 | 2100 | 0.0004 | - |
|
218 |
+
| 0.5972 | 2150 | 0.0004 | - |
|
219 |
+
| 0.6111 | 2200 | 0.0005 | - |
|
220 |
+
| 0.625 | 2250 | 0.0004 | - |
|
221 |
+
| 0.6389 | 2300 | 0.0005 | - |
|
222 |
+
| 0.6528 | 2350 | 0.0004 | - |
|
223 |
+
| 0.6667 | 2400 | 0.0003 | - |
|
224 |
+
| 0.6806 | 2450 | 0.0004 | - |
|
225 |
+
| 0.6944 | 2500 | 0.0007 | - |
|
226 |
+
| 0.7083 | 2550 | 0.0003 | - |
|
227 |
+
| 0.7222 | 2600 | 0.0003 | - |
|
228 |
+
| 0.7361 | 2650 | 0.101 | - |
|
229 |
+
| 0.75 | 2700 | 0.0003 | - |
|
230 |
+
| 0.7639 | 2750 | 0.0004 | - |
|
231 |
+
| 0.7778 | 2800 | 0.0004 | - |
|
232 |
+
| 0.7917 | 2850 | 0.0003 | - |
|
233 |
+
| 0.8056 | 2900 | 0.0004 | - |
|
234 |
+
| 0.8194 | 2950 | 0.0899 | - |
|
235 |
+
| 0.8333 | 3000 | 0.0003 | - |
|
236 |
+
| 0.8472 | 3050 | 0.0002 | - |
|
237 |
+
| 0.8611 | 3100 | 0.0002 | - |
|
238 |
+
| 0.875 | 3150 | 0.0003 | - |
|
239 |
+
| 0.8889 | 3200 | 0.0002 | - |
|
240 |
+
| 0.9028 | 3250 | 0.0003 | - |
|
241 |
+
| 0.9167 | 3300 | 0.0004 | - |
|
242 |
+
| 0.9306 | 3350 | 0.0003 | - |
|
243 |
+
| 0.9444 | 3400 | 0.0003 | - |
|
244 |
+
| 0.9583 | 3450 | 0.0547 | - |
|
245 |
+
| 0.9722 | 3500 | 0.0003 | - |
|
246 |
+
| 0.9861 | 3550 | 0.0004 | - |
|
247 |
+
| 1.0 | 3600 | 0.0002 | - |
|
248 |
+
|
249 |
+
### Framework Versions
|
250 |
+
- Python: 3.10.13
|
251 |
+
- SetFit: 1.0.3
|
252 |
+
- Sentence Transformers: 2.7.0
|
253 |
+
- spaCy: 3.7.4
|
254 |
+
- Transformers: 4.36.2
|
255 |
+
- PyTorch: 2.1.2
|
256 |
+
- Datasets: 2.18.0
|
257 |
+
- Tokenizers: 0.15.2
|
258 |
+
|
259 |
+
## Citation
|
260 |
+
|
261 |
+
### BibTeX
|
262 |
+
```bibtex
|
263 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
264 |
+
doi = {10.48550/ARXIV.2209.11055},
|
265 |
+
url = {https://arxiv.org/abs/2209.11055},
|
266 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
267 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
268 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
269 |
+
publisher = {arXiv},
|
270 |
+
year = {2022},
|
271 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
272 |
+
}
|
273 |
+
```
|
274 |
+
|
275 |
+
<!--
|
276 |
+
## Glossary
|
277 |
+
|
278 |
+
*Clearly define terms in order to be accessible across audiences.*
|
279 |
+
-->
|
280 |
+
|
281 |
+
<!--
|
282 |
+
## Model Card Authors
|
283 |
+
|
284 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
285 |
+
-->
|
286 |
+
|
287 |
+
<!--
|
288 |
+
## Model Card Contact
|
289 |
+
|
290 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
291 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "firqaaa/indo-setfit-absa-bert-base-restaurants-polarity",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.36.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.33.0",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"konflik",
|
4 |
+
"negatif",
|
5 |
+
"netral",
|
6 |
+
"positif"
|
7 |
+
],
|
8 |
+
"normalize_embeddings": false,
|
9 |
+
"spacy_model": "id_core_news_trf",
|
10 |
+
"span_context": 3
|
11 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d08aa9aa35ffeee36d8a38eca3165d140a40691e03fe9f04407a188acf01cec
|
3 |
+
size 2271064456
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:555962a8fdc925ff94af2b58e33340dc040a114781cd1089dbbb21ffe528915b
|
3 |
+
size 25503
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1af481bd08ed9347cf9d3d07c24e5de75a10983819de076436400609e6705686
|
3 |
+
size 17083075
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 8192,
|
50 |
+
"model_max_length": 8192,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"sp_model_kwargs": {},
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|