import os import cv2 import argparse import glob import torch from torchvision.transforms.functional import normalize from basicsr.utils import imwrite, img2tensor, tensor2img from basicsr.utils.download_util import load_file_from_url from basicsr.utils.misc import gpu_is_available, get_device from facelib.utils.face_restoration_helper import FaceRestoreHelper from facelib.utils.misc import is_gray from basicsr.utils.registry import ARCH_REGISTRY pretrain_model_url = { 'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', } def set_realesrgan(): from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils.realesrgan_utils import RealESRGANer use_half = False if torch.cuda.is_available(): # set False in CPU/MPS mode no_half_gpu_list = ['1650', '1660'] # set False for GPUs that don't support f16 if not True in [gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list]: use_half = True model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2, ) upsampler = RealESRGANer( scale=2, model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth", model=model, tile=args.bg_tile, tile_pad=40, pre_pad=0, half=use_half ) if not gpu_is_available(): # CPU import warnings warnings.warn('Running on CPU now! Make sure your PyTorch version matches your CUDA.' 'The unoptimized RealESRGAN is slow on CPU. ' 'If you want to disable it, please remove `--bg_upsampler` and `--face_upsample` in command.', category=RuntimeWarning) return upsampler if __name__ == '__main__': # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = get_device() parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_path', type=str, default='./inputs/whole_imgs', help='Input image, video or folder. Default: inputs/whole_imgs') parser.add_argument('-o', '--output_path', type=str, default=None, help='Output folder. Default: results/_') parser.add_argument('-w', '--fidelity_weight', type=float, default=0.5, help='Balance the quality and fidelity. Default: 0.5') parser.add_argument('-s', '--upscale', type=int, default=2, help='The final upsampling scale of the image. Default: 2') parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False') parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False') parser.add_argument('--draw_box', action='store_true', help='Draw the bounding box for the detected faces. Default: False') # large det_model: 'YOLOv5l', 'retinaface_resnet50' # small det_model: 'YOLOv5n', 'retinaface_mobile0.25' parser.add_argument('--detection_model', type=str, default='retinaface_resnet50', help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \ Default: retinaface_resnet50') parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: realesrgan') parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False') parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400') parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None') parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None') args = parser.parse_args() # ------------------------ input & output ------------------------ w = args.fidelity_weight input_video = False if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path input_img_list = [args.input_path] result_root = f'results/test_img_{w}' elif args.input_path.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path from basicsr.utils.video_util import VideoReader, VideoWriter input_img_list = [] vidreader = VideoReader(args.input_path) image = vidreader.get_frame() while image is not None: input_img_list.append(image) image = vidreader.get_frame() audio = vidreader.get_audio() fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps video_name = os.path.basename(args.input_path)[:-4] result_root = f'results/{video_name}_{w}' input_video = True vidreader.close() else: # input img folder if args.input_path.endswith('/'): # solve when path ends with / args.input_path = args.input_path[:-1] # scan all the jpg and png images input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]'))) result_root = f'results/{os.path.basename(args.input_path)}_{w}' if not args.output_path is None: # set output path result_root = args.output_path test_img_num = len(input_img_list) if test_img_num == 0: raise FileNotFoundError('No input image/video is found...\n' '\tNote that --input_path for video should end with .mp4|.mov|.avi') # ------------------ set up background upsampler ------------------ if args.bg_upsampler == 'realesrgan': bg_upsampler = set_realesrgan() else: bg_upsampler = None # ------------------ set up face upsampler ------------------ if args.face_upsample: if bg_upsampler is not None: face_upsampler = bg_upsampler else: face_upsampler = set_realesrgan() else: face_upsampler = None # ------------------ set up CodeFormer restorer ------------------- net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(device) # ckpt_path = 'weights/CodeFormer/codeformer.pth' ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'], model_dir='weights/CodeFormer', progress=True, file_name=None) checkpoint = torch.load(ckpt_path)['params_ema'] net.load_state_dict(checkpoint) net.eval() # ------------------ set up FaceRestoreHelper ------------------- # large det_model: 'YOLOv5l', 'retinaface_resnet50' # small det_model: 'YOLOv5n', 'retinaface_mobile0.25' if not args.has_aligned: print(f'Face detection model: {args.detection_model}') if bg_upsampler is not None: print(f'Background upsampling: True, Face upsampling: {args.face_upsample}') else: print(f'Background upsampling: False, Face upsampling: {args.face_upsample}') face_helper = FaceRestoreHelper( args.upscale, face_size=512, crop_ratio=(1, 1), det_model = args.detection_model, save_ext='png', use_parse=True, device=device) # -------------------- start to processing --------------------- for i, img_path in enumerate(input_img_list): # clean all the intermediate results to process the next image face_helper.clean_all() if isinstance(img_path, str): img_name = os.path.basename(img_path) basename, ext = os.path.splitext(img_name) print(f'[{i+1}/{test_img_num}] Processing: {img_name}') img = cv2.imread(img_path, cv2.IMREAD_COLOR) else: # for video processing basename = str(i).zfill(6) img_name = f'{video_name}_{basename}' if input_video else basename print(f'[{i+1}/{test_img_num}] Processing: {img_name}') img = img_path if args.has_aligned: # the input faces are already cropped and aligned img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) face_helper.is_gray = is_gray(img, threshold=10) if face_helper.is_gray: print('Grayscale input: True') face_helper.cropped_faces = [img] else: face_helper.read_image(img) # get face landmarks for each face num_det_faces = face_helper.get_face_landmarks_5( only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5) print(f'\tdetect {num_det_faces} faces') # align and warp each face face_helper.align_warp_face() # face restoration for each cropped face for idx, cropped_face in enumerate(face_helper.cropped_faces): # prepare data cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) try: with torch.no_grad(): output = net(cropped_face_t, w=w, adain=True)[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output torch.cuda.empty_cache() except Exception as error: print(f'\tFailed inference for CodeFormer: {error}') restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = restored_face.astype('uint8') face_helper.add_restored_face(restored_face, cropped_face) # paste_back if not args.has_aligned: # upsample the background if bg_upsampler is not None: # Now only support RealESRGAN for upsampling background bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0] else: bg_img = None face_helper.get_inverse_affine(None) # paste each restored face to the input image if args.face_upsample and face_upsampler is not None: restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler) else: restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box) # save faces for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)): # save cropped face if not args.has_aligned: save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png') imwrite(cropped_face, save_crop_path) # save restored face if args.has_aligned: save_face_name = f'{basename}.png' else: save_face_name = f'{basename}_{idx:02d}.png' if args.suffix is not None: save_face_name = f'{save_face_name[:-4]}_{args.suffix}.png' save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name) imwrite(restored_face, save_restore_path) # save restored img if not args.has_aligned and restored_img is not None: if args.suffix is not None: basename = f'{basename}_{args.suffix}' save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png') imwrite(restored_img, save_restore_path) # save enhanced video if input_video: print('Video Saving...') # load images video_frames = [] img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g'))) for img_path in img_list: img = cv2.imread(img_path) video_frames.append(img) # write images to video height, width = video_frames[0].shape[:2] if args.suffix is not None: video_name = f'{video_name}_{args.suffix}.png' save_restore_path = os.path.join(result_root, f'{video_name}.mp4') vidwriter = VideoWriter(save_restore_path, height, width, fps, audio) for f in video_frames: vidwriter.write_frame(f) vidwriter.close() print(f'\nAll results are saved in {result_root}')