import argparse import glob import numpy as np import os import cv2 import torch from torchvision.transforms.functional import normalize from basicsr.utils import imwrite, img2tensor, tensor2img from basicsr.utils.registry import ARCH_REGISTRY if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--test_path', type=str, default='datasets/ffhq/ffhq_512') parser.add_argument('-o', '--save_root', type=str, default='./experiments/pretrained_models/vqgan') parser.add_argument('--codebook_size', type=int, default=1024) parser.add_argument('--ckpt_path', type=str, default='./experiments/pretrained_models/vqgan/net_g.pth') args = parser.parse_args() if args.save_root.endswith('/'): # solve when path ends with / args.save_root = args.save_root[:-1] dir_name = os.path.abspath(args.save_root) os.makedirs(dir_name, exist_ok=True) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') test_path = args.test_path save_root = args.save_root ckpt_path = args.ckpt_path codebook_size = args.codebook_size vqgan = ARCH_REGISTRY.get('VQAutoEncoder')(512, 64, [1, 2, 2, 4, 4, 8], 'nearest', codebook_size=codebook_size).to(device) checkpoint = torch.load(ckpt_path)['params_ema'] vqgan.load_state_dict(checkpoint) vqgan.eval() sum_latent = np.zeros((codebook_size)).astype('float64') size_latent = 16 latent = {} latent['orig'] = {} latent['hflip'] = {} for i in ['orig', 'hflip']: # for i in ['hflip']: for img_path in sorted(glob.glob(os.path.join(test_path, '*.[jp][pn]g'))): img_name = os.path.basename(img_path) img = cv2.imread(img_path) if i == 'hflip': cv2.flip(img, 1, img) img = img2tensor(img / 255., bgr2rgb=True, float32=True) normalize(img, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) img = img.unsqueeze(0).to(device) with torch.no_grad(): # output = net(img)[0] x, feat_dict = vqgan.encoder(img, True) x, _, log = vqgan.quantize(x) # del output torch.cuda.empty_cache() min_encoding_indices = log['min_encoding_indices'] min_encoding_indices = min_encoding_indices.view(size_latent,size_latent) latent[i][img_name[:-4]] = min_encoding_indices.cpu().numpy() print(img_name, latent[i][img_name[:-4]].shape) latent_save_path = os.path.join(save_root, f'latent_gt_code{codebook_size}.pth') torch.save(latent, latent_save_path) print(f'\nLatent GT code are saved in {save_root}')