|
|
|
|
|
|
|
import time, pdb, argparse, subprocess |
|
import glob |
|
import os |
|
from tqdm import tqdm |
|
|
|
from SyncNetInstance_calc_scores import * |
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description = "SyncNet"); |
|
|
|
parser.add_argument('--initial_model', type=str, default="data/syncnet_v2.model", help=''); |
|
parser.add_argument('--batch_size', type=int, default='20', help=''); |
|
parser.add_argument('--vshift', type=int, default='15', help=''); |
|
parser.add_argument('--data_root', type=str, required=True, help=''); |
|
parser.add_argument('--tmp_dir', type=str, default="data/work/pytmp", help=''); |
|
parser.add_argument('--reference', type=str, default="demo", help=''); |
|
|
|
opt = parser.parse_args(); |
|
|
|
|
|
|
|
|
|
s = SyncNetInstance(); |
|
|
|
s.loadParameters(opt.initial_model); |
|
|
|
path = os.path.join(opt.data_root, "*.mp4") |
|
|
|
all_videos = glob.glob(path) |
|
|
|
prog_bar = tqdm(range(len(all_videos))) |
|
avg_confidence = 0. |
|
avg_min_distance = 0. |
|
|
|
|
|
for videofile_idx in prog_bar: |
|
videofile = all_videos[videofile_idx] |
|
offset, confidence, min_distance = s.evaluate(opt, videofile=videofile) |
|
avg_confidence += confidence |
|
avg_min_distance += min_distance |
|
prog_bar.set_description('Avg Confidence: {}, Avg Minimum Dist: {}'.format(round(avg_confidence / (videofile_idx + 1), 3), round(avg_min_distance / (videofile_idx + 1), 3))) |
|
prog_bar.refresh() |
|
|
|
print ('Average Confidence: {}'.format(avg_confidence/len(all_videos))) |
|
print ('Average Minimum Distance: {}'.format(avg_min_distance/len(all_videos))) |
|
|
|
|
|
|
|
|