wav2lip / models /wav2lip.py
zhangbo2008's picture
Upload folder using huggingface_hub
6a20b7b
import torch
from torch import nn
from torch.nn import functional as F
import math
from .conv import Conv2dTranspose, Conv2d, nonorm_Conv2d
class Wav2Lip(nn.Module):
def __init__(self):
super(Wav2Lip, self).__init__()
self.face_encoder_blocks = nn.ModuleList([
nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3)), # 96,96
nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1), # 48,48
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1), # 24,24
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1), # 12,12
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1), # 6,6
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1), # 3,3
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),
nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=1, padding=0), # 1, 1
Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])
self.audio_encoder = nn.Sequential(
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
self.face_decoder_blocks = nn.ModuleList([
nn.Sequential(Conv2d(512, 512, kernel_size=1, stride=1, padding=0),),
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=1, padding=0), # 3,3
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),), # 6, 6
nn.Sequential(Conv2dTranspose(768, 384, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),), # 12, 12
nn.Sequential(Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),), # 24, 24
nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),), # 48, 48
nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),),]) # 96,96
self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1),
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
nn.Sigmoid())
def forward(self, audio_sequences, face_sequences):
# audio_sequences = (B, T, 1, 80, 16)
B = audio_sequences.size(0)
input_dim_size = len(face_sequences.size())
if input_dim_size > 4:
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
feats = []
x = face_sequences
for f in self.face_encoder_blocks:
x = f(x)
feats.append(x)
x = audio_embedding
for f in self.face_decoder_blocks:
x = f(x) #每一次,音频编码, concat 视频编码.
try:
x = torch.cat((x, feats[-1]), dim=1)
except Exception as e:
print(x.size())
print(feats[-1].size())
raise e
feats.pop()
x = self.output_block(x)
if input_dim_size > 4:
x = torch.split(x, B, dim=0) # [(B, C, H, W)]
outputs = torch.stack(x, dim=2) # (B, C, T, H, W)
else:
outputs = x
return outputs
class Wav2Lip_disc_qual(nn.Module):
def __init__(self):
super(Wav2Lip_disc_qual, self).__init__()
self.face_encoder_blocks = nn.ModuleList([
nn.Sequential(nonorm_Conv2d(3, 32, kernel_size=7, stride=1, padding=3)), # 48,96
nn.Sequential(nonorm_Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=2), # 48,48
nonorm_Conv2d(64, 64, kernel_size=5, stride=1, padding=2)),
nn.Sequential(nonorm_Conv2d(64, 128, kernel_size=5, stride=2, padding=2), # 24,24
nonorm_Conv2d(128, 128, kernel_size=5, stride=1, padding=2)),
nn.Sequential(nonorm_Conv2d(128, 256, kernel_size=5, stride=2, padding=2), # 12,12
nonorm_Conv2d(256, 256, kernel_size=5, stride=1, padding=2)),
nn.Sequential(nonorm_Conv2d(256, 512, kernel_size=3, stride=2, padding=1), # 6,6
nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1)),
nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1), # 3,3
nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),
nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=0), # 1, 1
nonorm_Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])
self.binary_pred = nn.Sequential(nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0), nn.Sigmoid())
self.label_noise = .0
def get_lower_half(self, face_sequences):
return face_sequences[:, :, face_sequences.size(2)//2:]
def to_2d(self, face_sequences):
B = face_sequences.size(0)
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
return face_sequences
def perceptual_forward(self, false_face_sequences):
false_face_sequences = self.to_2d(false_face_sequences)
false_face_sequences = self.get_lower_half(false_face_sequences)
false_feats = false_face_sequences
for f in self.face_encoder_blocks:
false_feats = f(false_feats)
false_pred_loss = F.binary_cross_entropy(self.binary_pred(false_feats).view(len(false_feats), -1),
torch.ones((len(false_feats), 1)).cuda())
return false_pred_loss
def forward(self, face_sequences):
face_sequences = self.to_2d(face_sequences)
face_sequences = self.get_lower_half(face_sequences)
x = face_sequences
for f in self.face_encoder_blocks:
x = f(x)
return self.binary_pred(x).view(len(x), -1)