File size: 2,004 Bytes
4d77fb9
 
 
 
 
 
 
 
 
cf90079
4d77fb9
 
 
 
 
cf90079
4d77fb9
 
 
 
cc1f041
4d77fb9
 
cf90079
cc1f041
cf90079
 
cc1f041
cf90079
4d77fb9
 
 
 
 
 
 
 
 
cc1f041
 
 
 
4d77fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc1f041
 
 
4d77fb9
 
 
 
cc1f041
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- precision
- recall
base_model: distilbert-base-cased
model-index:
- name: bert-emotion
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: tweet_eval
      type: tweet_eval
      config: emotion
      split: validation
      args: emotion
    metrics:
    - type: precision
      value: 0.7505623807659564
      name: Precision
    - type: recall
      value: 0.7243031825553111
      name: Recall
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-emotion

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1413
- Precision: 0.7506
- Recall: 0.7243
- Fscore: 0.7340

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| 0.8556        | 1.0   | 815  | 0.7854          | 0.7461    | 0.5929 | 0.6088 |
| 0.5369        | 2.0   | 1630 | 0.9014          | 0.7549    | 0.7278 | 0.7359 |
| 0.2571        | 3.0   | 2445 | 1.1413          | 0.7506    | 0.7243 | 0.7340 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3