--- license: apache-2.0 language: - en base_model: - meta-llama/Llama-3.2-11B-Vision-Instruct --- ## Introduction This model originates from [Xkev/Llama-3.2V-11B-cot](https://huggingface.co/Xkev/Llama-3.2V-11B-cot). This repository simply quantizes the model into the NF4 format using the bitsandbytes library. All credit goes to the original repository. ## Usage ``` from transformers import MllamaForConditionalGeneration, AutoProcessor, BitsAndBytesConfig from PIL import Image import time # Load model model_id = "zhangsongbo365/Llama-3.2V-11B-cot-nf4" model = MllamaForConditionalGeneration.from_pretrained( model_id, use_safetensors=True, device_map="cuda:0", trust_remote_code=True ) # Load tokenizer processor = AutoProcessor.from_pretrained(model_id) # Caption a local image IMAGE = Image.open("1.png").convert("RGB") # 改为你的实际图片路径 PROMPT = """<|begin_of_text|><|start_header_id|>user<|end_header_id|> Caption this image: <|image|><|eot_id|><|start_header_id|>assistant<|end_header_id|> """ inputs = processor(IMAGE, PROMPT, return_tensors="pt").to(model.device) prompt_tokens = len(inputs['input_ids'][0]) print(f"Prompt tokens: {prompt_tokens}") t0 = time.time() generate_ids = model.generate(**inputs, max_new_tokens=256) t1 = time.time() total_time = t1 - t0 generated_tokens = len(generate_ids[0]) - prompt_tokens time_per_token = generated_tokens/total_time print(f"Generated {generated_tokens} tokens in {total_time:.3f} s ({time_per_token:.3f} tok/s)") output = processor.decode(generate_ids[0][prompt_tokens:]).replace('<|eot_id|>', '') ```