zhoadk/vit-base-patch16-224-in21k-finetuned-lora-food101
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: google/vit-base-patch16-224-in21k
|
3 |
+
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
tags:
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: vit-base-patch16-224-in21k-finetuned-lora-food101
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# vit-base-patch16-224-in21k-finetuned-lora-food101
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0744
|
22 |
+
- Accuracy: 1.0
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.005
|
42 |
+
- train_batch_size: 64
|
43 |
+
- eval_batch_size: 64
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 256
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 5
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
56 |
+
| No log | 0.8 | 3 | 2.2155 | 0.99 |
|
57 |
+
| No log | 1.8667 | 7 | 0.3241 | 0.98 |
|
58 |
+
| 1.7947 | 2.9333 | 11 | 0.1304 | 0.98 |
|
59 |
+
| 1.7947 | 4.0 | 15 | 0.0744 | 1.0 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- PEFT 0.13.2
|
65 |
+
- Transformers 4.44.2
|
66 |
+
- Pytorch 2.4.1+cu121
|
67 |
+
- Datasets 3.0.1
|
68 |
+
- Tokenizers 0.19.1
|
runs/Oct17_11-35-47_d41f08a65555/events.out.tfevents.1729164949.d41f08a65555.56041.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74d9348cf6db8e170c6f9dcb6d4279d76c06826d9426b0e6c909cf5c9f588447
|
3 |
+
size 11535
|