--- base_model: google/vit-base-patch16-224-in21k library_name: peft license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: vit-base-patch16-224-in21k-finetuned-lora-food101 results: [] --- # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0744 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | 2.2155 | 0.99 | | No log | 1.8667 | 7 | 0.3241 | 0.98 | | 1.7947 | 2.9333 | 11 | 0.1304 | 0.98 | | 1.7947 | 4.0 | 15 | 0.0744 | 1.0 | ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1