zhav1k commited on
Commit
2417710
·
1 Parent(s): 4e49c3f

uploading model v3

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 199.65 +/- 71.36
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 279.47 +/- 18.86
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f47b8d9dcb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f47b8d9dd40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f47b8d9ddd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f47b8d9de60>", "_build": "<function ActorCriticPolicy._build at 0x7f47b8d9def0>", "forward": "<function ActorCriticPolicy.forward at 0x7f47b8d9df80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f47b8da7050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f47b8da70e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f47b8da7170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f47b8da7200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f47b8da7290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f47b8df14b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652082410.4590454, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObzmr21zrA/JdzMvn6JTb4Spti9xr9DvgAAAAAAAAAA87GdvVxrdroWlJe7az1Rtip+YDuN/7A6AACAPwAAgD8zatY9cIKFPyMF/7snXCa+HkeKPFqaob0AAAAAAAAAAM2IjzyP9li6Df9Luuk+ojVPSZE77r5uOQAAgD8AAIA/zRfzvFwjDboeR0c55NOYNO9qljv6Imy4AACAPwAAgD8ajLw9UkD6ucppuTf8rNYy6nzTut2p1bYAAIA/AACAP2ZoK7yPHjS6PJSVuHwMQrMCuWQ5ZD+wNwAAgD8AAIA/AD4hPeEog7o1KIa7VpWRtvDlyLrHqgI2AACAPwAAgD8AkSm9CPKePg5Foz03ll2+yXfyPFm5FzsAAAAAAAAAAM3HCj326G66bdUZOkJ9eDXLFAu7mlI0uQAAgD8AAIA/zWFqPRQUhLqamRW2a2EtscD6sLoFuzw1AACAPwAAgD8zySc+6erPPtPPLL4uKh++N30NvQr7gzwAAAAAAAAAAMqNW74dRSg/hLwuPpT6NL5yeWk8j0MivQAAAAAAAAAAzUQGvPZUdbq6geM6BKi2NS2yuTqyvgS6AACAPwAAgD+mlsm9wuVEPjhT+rya7ym+BBaavToZhr0AAAAAAAAAAGZXdL2uvZK6hA6FN/CJqDJzChW5kimZtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu18F+O5HY0CUhpRSlIwBbJRN6AOMAXSUR0CVyeHDJlredX2UKGgGaAloD0MILdFZZpFTYUCUhpRSlGgVTegDaBZHQJXSlgAp8Wt1fZQoaAZoCWgPQwjFyf0ORaBiQJSGlFKUaBVN6ANoFkdAldKvDHfdh3V9lChoBmgJaA9DCBbfUPhs/WRAlIaUUpRoFU3oA2gWR0CV0/pXIU8FdX2UKGgGaAloD0MIiljEsMNvZECUhpRSlGgVTegDaBZHQJXfZ/EwWWR1fZQoaAZoCWgPQwhBfjZyXVphQJSGlFKUaBVN6ANoFkdAleDepjtojHV9lChoBmgJaA9DCElkH2RZxGNAlIaUUpRoFU3oA2gWR0CV4vtWuHN5dX2UKGgGaAloD0MITwMGSZ9AY0CUhpRSlGgVTegDaBZHQJXs9uxbB451fZQoaAZoCWgPQwgRxHk4gWheQJSGlFKUaBVN6ANoFkdAle0LRfF72XV9lChoBmgJaA9DCBTObi0TJGNAlIaUUpRoFU3oA2gWR0CV8ZXgLqlhdX2UKGgGaAloD0MIwAgaMwmeYkCUhpRSlGgVTegDaBZHQJXx/rTpgTh1fZQoaAZoCWgPQwgEIO7q1TNlQJSGlFKUaBVN6ANoFkdAlfO+zQeFL3V9lChoBmgJaA9DCPBsj97wAGFAlIaUUpRoFU3oA2gWR0CV9yI8hcJMdX2UKGgGaAloD0MITTJyFnbjY0CUhpRSlGgVTegDaBZHQJYJ8AmzByl1fZQoaAZoCWgPQwimJsEb0nVhQJSGlFKUaBVN6ANoFkdAlg1ESRKYiXV9lChoBmgJaA9DCPDC1mzl5V9AlIaUUpRoFU3oA2gWR0CWELYQrc0tdX2UKGgGaAloD0MIdXKG4g7TY0CUhpRSlGgVTegDaBZHQJY5qFN+LFZ1fZQoaAZoCWgPQwhstBzoIWxgQJSGlFKUaBVN6ANoFkdAlkJAnYxtYXV9lChoBmgJaA9DCPUqMjog22FAlIaUUpRoFU3oA2gWR0CWQlposZpBdX2UKGgGaAloD0MITz3S4LbNZECUhpRSlGgVTegDaBZHQJZDsYtQKrt1fZQoaAZoCWgPQwhPsWoQZrhkQJSGlFKUaBVN6ANoFkdAlk68QNCqqHV9lChoBmgJaA9DCCsSE9RwlGVAlIaUUpRoFU3oA2gWR0CWUAmbb1yvdX2UKGgGaAloD0MIFJhO6zbDY0CUhpRSlGgVTegDaBZHQJZR2ZZ0Syt1fZQoaAZoCWgPQwhIMxZNZz9fQJSGlFKUaBVN6ANoFkdAlltbGJemenV9lChoBmgJaA9DCILEdvcA819AlIaUUpRoFU3oA2gWR0CWW26Skj5cdX2UKGgGaAloD0MIi6VIvhIXZECUhpRSlGgVTegDaBZHQJZfuvKU3XJ1fZQoaAZoCWgPQwgpr5XQ3fNiQJSGlFKUaBVN6ANoFkdAlmAfqkdmx3V9lChoBmgJaA9DCBoUzQNYNVlAlIaUUpRoFU3oA2gWR0CWYb6FM7EHdX2UKGgGaAloD0MIh99Nt+wnWUCUhpRSlGgVTegDaBZHQJZlAu6ErXl1fZQoaAZoCWgPQwhblNkgk4QkQJSGlFKUaBVNbAFoFkdAlngvOhTOxHV9lChoBmgJaA9DCFk0nZ2ML2FAlIaUUpRoFU3oA2gWR0CWeLxtHhCMdX2UKGgGaAloD0MIk2+2uTGSXECUhpRSlGgVTegDaBZHQJZ79EMLF4t1fZQoaAZoCWgPQwjAJQD/lINgQJSGlFKUaBVN6ANoFkdAln9SSzPa+XV9lChoBmgJaA9DCFA0D2CRlV1AlIaUUpRoFU3oA2gWR0CWqLUSqU/wdX2UKGgGaAloD0MIi/z6IbYda0CUhpRSlGgVTZQCaBZHQJavo6fapP11fZQoaAZoCWgPQwhLyXISSpBaQJSGlFKUaBVN6ANoFkdAlrGPjCHh0nV9lChoBmgJaA9DCGdl+5C3SlxAlIaUUpRoFU3oA2gWR0CWsafmLcbjdX2UKGgGaAloD0MIhlrTvONoYECUhpRSlGgVTegDaBZHQJay+39aUzN1fZQoaAZoCWgPQwhY42w6Ai5kQJSGlFKUaBVN6ANoFkdAlr5BTsIE83V9lChoBmgJaA9DCASNmUS9j1ZAlIaUUpRoFU3oA2gWR0CWv7CNCJGfdX2UKGgGaAloD0MIONpxw2+NZUCUhpRSlGgVTegDaBZHQJbBsgB91EF1fZQoaAZoCWgPQwhKfO4E+95eQJSGlFKUaBVN6ANoFkdAltEHWBjFynV9lChoBmgJaA9DCABvgQRFg2RAlIaUUpRoFU3oA2gWR0CW0XQ7tAs1dX2UKGgGaAloD0MISN+kaVAMYUCUhpRSlGgVTegDaBZHQJbTXaSLZSN1fZQoaAZoCWgPQwgVrHE2HeRhQJSGlFKUaBVN6ANoFkdAltdjvAoG6nV9lChoBmgJaA9DCPEqa5tiPGBAlIaUUpRoFU3oA2gWR0CW7Ci5d4VzdX2UKGgGaAloD0MIcFzGTQ3/XkCUhpRSlGgVTegDaBZHQJbswtf5ULl1fZQoaAZoCWgPQwjv4ZLjzollQJSGlFKUaBVN6ANoFkdAlvA8RUWEb3V9lChoBmgJaA9DCAeZZOSs4GFAlIaUUpRoFU3oA2gWR0CW8+Zdv864dX2UKGgGaAloD0MIgzKNJhfcY0CUhpRSlGgVTegDaBZHQJcA2TPjXFt1fZQoaAZoCWgPQwhdFajF4I1jQJSGlFKUaBVN6ANoFkdAlyUBOHnEEXV9lChoBmgJaA9DCJMa2gDs3mFAlIaUUpRoFU3oA2gWR0CXJvSx7iQ1dX2UKGgGaAloD0MIWtdoOdCOYUCUhpRSlGgVTegDaBZHQJcnD+Kjzqd1fZQoaAZoCWgPQwjJy5pYYJdkQJSGlFKUaBVN6ANoFkdAlyhkq+ajOHV9lChoBmgJaA9DCIhp39zfN2NAlIaUUpRoFU3oA2gWR0CXNCukDZDidX2UKGgGaAloD0MIOPjCZCoZYUCUhpRSlGgVTegDaBZHQJc1qJP69Ch1fZQoaAZoCWgPQwiEud3LfYJZQJSGlFKUaBVN6ANoFkdAlzfGQ0XP7nV9lChoBmgJaA9DCH9rJ0pCb11AlIaUUpRoFU3oA2gWR0CXR01bJOnEdX2UKGgGaAloD0MI+KdUibLDWECUhpRSlGgVTegDaBZHQJdHyJxeb/h1fZQoaAZoCWgPQwgAqOLGrXhkQJSGlFKUaBVN6ANoFkdAl0nV/YraunV9lChoBmgJaA9DCFWmmIOg415AlIaUUpRoFU3oA2gWR0CXTi8/UvwmdX2UKGgGaAloD0MIk4ychT2dXUCUhpRSlGgVTegDaBZHQJdjRdMTN+t1fZQoaAZoCWgPQwjoEaPnFhZfQJSGlFKUaBVN6ANoFkdAl2PZf2K2rnV9lChoBmgJaA9DCPq19dP/JmNAlIaUUpRoFU3oA2gWR0CXZwqFAVwhdX2UKGgGaAloD0MIMA3DR8SBYECUhpRSlGgVTegDaBZHQJdqezZ6D5F1fZQoaAZoCWgPQwgF24gnO3FjQJSGlFKUaBVN6ANoFkdAl3e3rQgLZ3V9lChoBmgJaA9DCCaKkLodYWBAlIaUUpRoFU3oA2gWR0CXm7ZLIxQBdX2UKGgGaAloD0MI1IBB0qeSXUCUhpRSlGgVTegDaBZHQJedrFjurp91fZQoaAZoCWgPQwj6eyk8aDxkQJSGlFKUaBVN6ANoFkdAl53FUZNwi3V9lChoBmgJaA9DCN0m3CvzoV9AlIaUUpRoFU3oA2gWR0CXnxIJJGvwdX2UKGgGaAloD0MIKhprf2c0YUCUhpRSlGgVTegDaBZHQJeq+XlbNbF1fZQoaAZoCWgPQwj1gHnIlLplQJSGlFKUaBVN6ANoFkdAl6xzEehf0HV9lChoBmgJaA9DCCwq4nSSVFlAlIaUUpRoFU3oA2gWR0CXrn8Z1mrbdX2UKGgGaAloD0MIjgQabOrSW0CUhpRSlGgVTegDaBZHQJe+X1rZamp1fZQoaAZoCWgPQwhcjexKy6tcQJSGlFKUaBVN6ANoFkdAl77cry1/lXV9lChoBmgJaA9DCLvs151usmBAlIaUUpRoFU3oA2gWR0CXwMTgVGkOdX2UKGgGaAloD0MIdsO2RZlWWECUhpRSlGgVTegDaBZHQJfEZJ17pmp1fZQoaAZoCWgPQwiTGARWDvhhQJSGlFKUaBVN6ANoFkdAl9d7hJiAlXV9lChoBmgJaA9DCPyLoDGTYGVAlIaUUpRoFU3oA2gWR0CX2AJZW7vodX2UKGgGaAloD0MIeNMtO8TnXUCUhpRSlGgVTegDaBZHQJfa00tRNyp1fZQoaAZoCWgPQwi5b7VOXPVfQJSGlFKUaBVN6ANoFkdAl93fNu+AVnV9lChoBmgJaA9DCIl7LH1oP2FAlIaUUpRoFU3oA2gWR0CX6Pj5bhWHdX2UKGgGaAloD0MI+fiE7LzrTUCUhpRSlGgVTR8BaBZHQJgLvlV94NZ1fZQoaAZoCWgPQwgv4GWGjUhhQJSGlFKUaBVN6ANoFkdAmAvt0JWvKXV9lChoBmgJaA9DCNmTwOYcMF9AlIaUUpRoFU3oA2gWR0CYDbky1uzhdX2UKGgGaAloD0MI6jwq/u+iYkCUhpRSlGgVTegDaBZHQJgN0dBBzFN1fZQoaAZoCWgPQwja/wBr1VtjQJSGlFKUaBVN6ANoFkdAmA8ZKFqSHXV9lChoBmgJaA9DCNXt7CsPRFpAlIaUUpRoFU3oA2gWR0CYGiwG4ZuRdX2UKGgGaAloD0MISKeufJY5ZUCUhpRSlGgVTegDaBZHQJgbi8WbgCR1fZQoaAZoCWgPQwieJ56zBctcQJSGlFKUaBVN6ANoFkdAmB2Fa4c3l3V9lChoBmgJaA9DCCSdgZGXgF5AlIaUUpRoFU3oA2gWR0CYLd4Pf8/EdX2UKGgGaAloD0MIVWthFlpBYUCUhpRSlGgVTegDaBZHQJguWAVfu1F1fZQoaAZoCWgPQwivmXyzzVZfQJSGlFKUaBVN6ANoFkdAmDCJXU6PsHV9lChoBmgJaA9DCP6eWKfKLmBAlIaUUpRoFU3oA2gWR0CYNKrIYFaCdX2UKGgGaAloD0MI01CjkGS6Y0CUhpRSlGgVTegDaBZHQJhLI9/z8P51fZQoaAZoCWgPQwiIodXJmf5lQJSGlFKUaBVN6ANoFkdAmE+Rsyi22HV9lChoBmgJaA9DCE61FmYh0WJAlIaUUpRoFU3oA2gWR0CYU326kIomdX2UKGgGaAloD0MIz8DIy5rwb0CUhpRSlGgVTRoDaBZHQJhUTxusLfF1fZQoaAZoCWgPQwjtLHqngttjQJSGlFKUaBVN6ANoFkdAmGFenQ6ZIHV9lChoBmgJaA9DCPdXj/tWLV1AlIaUUpRoFU3oA2gWR0CYaOZuyeI3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2927adc5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2927adc680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2927adc710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2927adc7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f2927adc830>", "forward": "<function ActorCriticPolicy.forward at 0x7f2927adc8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2927adc950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2927adc9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2927adca70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2927adcb00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2927adcb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2927b2b330>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652100851.8974397, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZmLbzsDqi7ltb+usriWjw+zAs9ItE8vQAAgD8AAIA/5gUaPukGJT9GPCK+JRfkvui1Jj6ii6S+AAAAAAAAAACGdGg+9V5vP84lcT45hQa/FnHqPv9yIj0AAAAAAAAAAADcKj4Hpew+1SzUvm1wcL4i9c+9/EPHvgAAAAAAAAAAAPZCvBREorqSY/a05sE7r1KA3LpgGls0AACAPwAAgD9zZUG+VEvnPianJD5P7Ku+JUkQPXvfBb0AAAAAAAAAAA2FOz5eV6c/xSmiPlaQ8r40No8+yaUZPQAAAAAAAAAAM3ovvcOTZbw9vU29MPVhPEmumT3L3WQ+AACAPwAAgD8msfu9uv6HPwKZhL4ZY+i+R5qIvt1FVb4AAAAAAAAAADNJOL09clS78mz/PSIzUr6y3W47PnogPAAAAAAAAIA/zdAivdQI9z0asgE+CqCcvhi0gDvtSfO6AAAAAAAAAABz/ak9ozFHP6/4vjzL89C+hDGdPR3S0zwAAAAAAAAAAKYv3L30IYs/tGcJvg3o/r6cL1C+FmgXPQAAAAAAAAAAZigQvK17Lj/35wG+i/nkvnPGE72hpkq9AAAAAAAAAAAzBBo9nOoQPfK63b05j5i+W7N1vfN2Uj0AAAAAAAAAAOYrnT1SqF4/o7yMPb1l2r6CFw0+Ha1VvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJV0z+Wbvb0CUhpRSlIwBbJRL4owBdJRHQKUo5TCtRvZ1fZQoaAZoCWgPQwjhz/BmDadyQJSGlFKUaBVL/mgWR0ClKVw40dildX2UKGgGaAloD0MI+oBAZ9K4bECUhpRSlGgVS+JoFkdApSlpx95Qg3V9lChoBmgJaA9DCFhVL79T1XJAlIaUUpRoFUvraBZHQKUpvD5TIeZ1fZQoaAZoCWgPQwjICRNGs8RwQJSGlFKUaBVLyGgWR0ClKcVjZteldX2UKGgGaAloD0MIqwSLwxkfcUCUhpRSlGgVS99oFkdApSnhNdqtYHV9lChoBmgJaA9DCCao4VsYY3FAlIaUUpRoFUvtaBZHQKUqM0l7dBV1fZQoaAZoCWgPQwifyJOkK1NxQJSGlFKUaBVLxmgWR0ClKoFr2xptdX2UKGgGaAloD0MIvoV14x1Wc0CUhpRSlGgVS9doFkdApSqK8pTdcnV9lChoBmgJaA9DCCsv+Z+8fXFAlIaUUpRoFUviaBZHQKUrS+W4Vh11fZQoaAZoCWgPQwiYT1YMF2pxQJSGlFKUaBVL4WgWR0ClK2+Ad4mkdX2UKGgGaAloD0MI8DFYcerLcUCUhpRSlGgVS8poFkdApStmJDVpbnV9lChoBmgJaA9DCDaVRWGX1GxAlIaUUpRoFUvXaBZHQKUrp2Cdz4l1fZQoaAZoCWgPQwhWR450hmxxQJSGlFKUaBVL6mgWR0ClK9h4D9wWdX2UKGgGaAloD0MIRfZBlgW2b0CUhpRSlGgVS/RoFkdApSww1vVEu3V9lChoBmgJaA9DCHPyIhMwMnBAlIaUUpRoFUvSaBZHQKUsY5tFa0R1fZQoaAZoCWgPQwiismFNJdVwQJSGlFKUaBVL22gWR0ClLQojOcDsdX2UKGgGaAloD0MImxw+6UTXb0CUhpRSlGgVS9toFkdApS0Ye9zwMHV9lChoBmgJaA9DCCQLmMDtIHNAlIaUUpRoFUvPaBZHQKUtQkhzNll1fZQoaAZoCWgPQwgFhxdEZNJxQJSGlFKUaBVL2GgWR0ClLWCHRCyAdX2UKGgGaAloD0MIPglszsGzbUCUhpRSlGgVS+FoFkdApS2wfr8iwHV9lChoBmgJaA9DCABw7NkzdnJAlIaUUpRoFUvOaBZHQKUuB8OTaCd1fZQoaAZoCWgPQwhR3Vz8bYFuQJSGlFKUaBVL0GgWR0ClLhpO32EkdX2UKGgGaAloD0MIIF1sWilQcUCUhpRSlGgVS+VoFkdApS4dgYxcmnV9lChoBmgJaA9DCLBXWHA/+3BAlIaUUpRoFUu9aBZHQKUuh4RmK651fZQoaAZoCWgPQwhYWdsUjxBvQJSGlFKUaBVL3GgWR0ClRffLs8gZdX2UKGgGaAloD0MIv2A3bFvRbkCUhpRSlGgVS85oFkdApUYypHZsbnV9lChoBmgJaA9DCFLRWPt7iXJAlIaUUpRoFUv3aBZHQKVGhzH0btJ1fZQoaAZoCWgPQwi8AtGTssdwQJSGlFKUaBVL8GgWR0ClRqUfYBeYdX2UKGgGaAloD0MIUHEceLWPcUCUhpRSlGgVS9BoFkdApUakuYhManV9lChoBmgJaA9DCCnLEMd6anFAlIaUUpRoFUvraBZHQKVHVyrgflp1fZQoaAZoCWgPQwgRcAhVKktxQJSGlFKUaBVL02gWR0ClR5Kyv9tNdX2UKGgGaAloD0MI5ggZyDM6c0CUhpRSlGgVS8poFkdApUeiQA+6iHV9lChoBmgJaA9DCDm0yHY+9XJAlIaUUpRoFUvYaBZHQKVHuFIuoP11fZQoaAZoCWgPQwgI6SlyiEpyQJSGlFKUaBVLvWgWR0ClR9iaiKzidX2UKGgGaAloD0MIHLXC9D3IckCUhpRSlGgVS+poFkdApUhU6DGtIXV9lChoBmgJaA9DCAeY+Q5+8m1AlIaUUpRoFUvYaBZHQKVIyq9XcQB1fZQoaAZoCWgPQwiz0qQU9I5zQJSGlFKUaBVL5mgWR0ClSPSmhufmdX2UKGgGaAloD0MIbvse9de5bECUhpRSlGgVS+RoFkdApUj/f642CXV9lChoBmgJaA9DCLmNBvAWn3BAlIaUUpRoFUvpaBZHQKVJj8lXzUZ1fZQoaAZoCWgPQwj+YOC5t0BwQJSGlFKUaBVLy2gWR0ClSeUxmCiAdX2UKGgGaAloD0MIvr7WpcZCcUCUhpRSlGgVS99oFkdApUoJHf/FSHV9lChoBmgJaA9DCG3lJf8TpnJAlIaUUpRoFUvPaBZHQKVKRYnOSnt1fZQoaAZoCWgPQwjzABb5tYxxQJSGlFKUaBVL8GgWR0ClSwa6J66bdX2UKGgGaAloD0MIejVAaaguWECUhpRSlGgVTegDaBZHQKVLFENvwVl1fZQoaAZoCWgPQwgM6IU7V3JxQJSGlFKUaBVL0WgWR0ClS14uTRpldX2UKGgGaAloD0MI1ZEjnUHCckCUhpRSlGgVTQYBaBZHQKVLaFSKm9B1fZQoaAZoCWgPQwgM5xpmaDZxQJSGlFKUaBVL0WgWR0ClS2trTH81dX2UKGgGaAloD0MIn8iTpKuscECUhpRSlGgVS9doFkdApUus6tDD0nV9lChoBmgJaA9DCNJUT+bfKnJAlIaUUpRoFUv9aBZHQKVL0m3OObR1fZQoaAZoCWgPQwh2Fr1TQYZyQJSGlFKUaBVL+mgWR0ClTBafBeoldX2UKGgGaAloD0MIRgpl4WvbcECUhpRSlGgVS9loFkdApUwYmNR3vHV9lChoBmgJaA9DCNB/D147b29AlIaUUpRoFUvNaBZHQKVMc0/nnuB1fZQoaAZoCWgPQwgFptO6DcJzQJSGlFKUaBVL0mgWR0ClTI4ODrZ8dX2UKGgGaAloD0MIpzy6EZZjb0CUhpRSlGgVS+VoFkdApUyo3rD633V9lChoBmgJaA9DCCCYo8evenJAlIaUUpRoFUvHaBZHQKVNH7rs0Hh1fZQoaAZoCWgPQwhhbCHIgR1xQJSGlFKUaBVL3GgWR0ClTSfPPcBVdX2UKGgGaAloD0MISG5Nuq26bUCUhpRSlGgVS+VoFkdApU2vD1oQF3V9lChoBmgJaA9DCGRz1TzHdXFAlIaUUpRoFUvdaBZHQKVNxXeWOZN1fZQoaAZoCWgPQwh07+GSI7dzQJSGlFKUaBVLz2gWR0ClTigoG6f8dX2UKGgGaAloD0MIdnEbDaDVckCUhpRSlGgVS8hoFkdApU5ZuZThpHV9lChoBmgJaA9DCI1F09nJEnFAlIaUUpRoFUviaBZHQKVOfgGbCrN1fZQoaAZoCWgPQwgTtTS3wjZyQJSGlFKUaBVL1mgWR0ClTp4VZcLSdX2UKGgGaAloD0MIcvikE4kHb0CUhpRSlGgVS+BoFkdApU7LAUL2H3V9lChoBmgJaA9DCCcUIuDQf3BAlIaUUpRoFUvEaBZHQKVOzAdGRV91fZQoaAZoCWgPQwjY0w5/jRNwQJSGlFKUaBVL0mgWR0ClTtq28Zk1dX2UKGgGaAloD0MI8GyP3jDOc0CUhpRSlGgVS7poFkdApU7rO9nK4nV9lChoBmgJaA9DCIUjSKXYUG5AlIaUUpRoFUvfaBZHQKVPcEoOQQt1fZQoaAZoCWgPQwjFG5lHvn1xQJSGlFKUaBVL1WgWR0ClT6BPTG5udX2UKGgGaAloD0MIaverAJ/lcECUhpRSlGgVS9RoFkdApU+4nlXA/XV9lChoBmgJaA9DCEAyHTr9gXFAlIaUUpRoFUvIaBZHQKVQHFLFn7J1fZQoaAZoCWgPQwgxQKIJVGhyQJSGlFKUaBVL2WgWR0ClUGSVv/BFdX2UKGgGaAloD0MIKPBOPr1Kc0CUhpRSlGgVS/9oFkdApVB3c580DXV9lChoBmgJaA9DCEbRAx+D+HBAlIaUUpRoFUvGaBZHQKVQqus90Rx1fZQoaAZoCWgPQwjrw3qjVolzQJSGlFKUaBVLy2gWR0ClUTsE7nxKdX2UKGgGaAloD0MIameY2tLXcECUhpRSlGgVS/BoFkdApVFuJiy6c3V9lChoBmgJaA9DCAOy17s/gHBAlIaUUpRoFUviaBZHQKVR2PiDM/11fZQoaAZoCWgPQwiyZI7lXaNRQJSGlFKUaBVLmWgWR0ClUdlvqC6IdX2UKGgGaAloD0MItykeFxUOc0CUhpRSlGgVS8poFkdApVHmpqASWnV9lChoBmgJaA9DCEAWokOgPXNAlIaUUpRoFUvaaBZHQKVR+6Mir1d1fZQoaAZoCWgPQwjytPzAlcZwQJSGlFKUaBVLx2gWR0ClUfvuw5eadX2UKGgGaAloD0MIFqbvNQQRckCUhpRSlGgVS+ZoFkdApVIK3RXwLHV9lChoBmgJaA9DCM9pFmj3l25AlIaUUpRoFUvRaBZHQKVSA1jy4F11fZQoaAZoCWgPQwjePUD3pWlwQJSGlFKUaBVL0WgWR0ClUhE+gUUPdX2UKGgGaAloD0MIvRqgNNS8ckCUhpRSlGgVS+5oFkdApVNJ/Tb35HV9lChoBmgJaA9DCPpjWpvGB3FAlIaUUpRoFUvzaBZHQKVTeYekpJB1fZQoaAZoCWgPQwgvNNdp5BFzQJSGlFKUaBVL32gWR0ClU5eSKWLQdX2UKGgGaAloD0MIh07Pu3FwcUCUhpRSlGgVS9BoFkdApVOoffXPJXV9lChoBmgJaA9DCJuuJ7ruUHNAlIaUUpRoFUvJaBZHQKVTy59Vmz11fZQoaAZoCWgPQwgO95Fbk8FuQJSGlFKUaBVL2GgWR0ClU9TewcHXdX2UKGgGaAloD0MIC0YldYLncECUhpRSlGgVS8doFkdApVRJCQcPv3V9lChoBmgJaA9DCIsyG2SSm25AlIaUUpRoFUvQaBZHQKVUoO938oB1fZQoaAZoCWgPQwgHYtnM4QZwQJSGlFKUaBVL02gWR0ClVQ938n/ldX2UKGgGaAloD0MIQIS4cvbGckCUhpRSlGgVS9FoFkdApVUVCkXUIHV9lChoBmgJaA9DCBMQk3AhFXJAlIaUUpRoFUvPaBZHQKVVIoG6f8N1fZQoaAZoCWgPQwhKDAIrR4FxQJSGlFKUaBVL3mgWR0ClVWd1EE1VdX2UKGgGaAloD0MIHxDoTNqpcECUhpRSlGgVS+FoFkdApVV7cO9WZXV9lChoBmgJaA9DCNnNjH70FXFAlIaUUpRoFUvnaBZHQKVVhCtRvWJ1fZQoaAZoCWgPQwj4M7xZQ+5xQJSGlFKUaBVL4mgWR0ClVYVLi++NdX2UKGgGaAloD0MIv9GOG/6+ckCUhpRSlGgVS/loFkdApVWktEofCHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 630, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:676bee2d9c45458f6e13e67b8f04e4295bf75ca0cd12f3688a9f67a9dd14b1f7
3
+ size 143983
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2927adc5f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2927adc680>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2927adc710>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2927adc7a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2927adc830>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2927adc8c0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2927adc950>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2927adc9e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2927adca70>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2927adcb00>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2927adcb90>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2927b2b330>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652100851.8974397,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZmLbzsDqi7ltb+usriWjw+zAs9ItE8vQAAgD8AAIA/5gUaPukGJT9GPCK+JRfkvui1Jj6ii6S+AAAAAAAAAACGdGg+9V5vP84lcT45hQa/FnHqPv9yIj0AAAAAAAAAAADcKj4Hpew+1SzUvm1wcL4i9c+9/EPHvgAAAAAAAAAAAPZCvBREorqSY/a05sE7r1KA3LpgGls0AACAPwAAgD9zZUG+VEvnPianJD5P7Ku+JUkQPXvfBb0AAAAAAAAAAA2FOz5eV6c/xSmiPlaQ8r40No8+yaUZPQAAAAAAAAAAM3ovvcOTZbw9vU29MPVhPEmumT3L3WQ+AACAPwAAgD8msfu9uv6HPwKZhL4ZY+i+R5qIvt1FVb4AAAAAAAAAADNJOL09clS78mz/PSIzUr6y3W47PnogPAAAAAAAAIA/zdAivdQI9z0asgE+CqCcvhi0gDvtSfO6AAAAAAAAAABz/ak9ozFHP6/4vjzL89C+hDGdPR3S0zwAAAAAAAAAAKYv3L30IYs/tGcJvg3o/r6cL1C+FmgXPQAAAAAAAAAAZigQvK17Lj/35wG+i/nkvnPGE72hpkq9AAAAAAAAAAAzBBo9nOoQPfK63b05j5i+W7N1vfN2Uj0AAAAAAAAAAOYrnT1SqF4/o7yMPb1l2r6CFw0+Ha1VvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJV0z+Wbvb0CUhpRSlIwBbJRL4owBdJRHQKUo5TCtRvZ1fZQoaAZoCWgPQwjhz/BmDadyQJSGlFKUaBVL/mgWR0ClKVw40dildX2UKGgGaAloD0MI+oBAZ9K4bECUhpRSlGgVS+JoFkdApSlpx95Qg3V9lChoBmgJaA9DCFhVL79T1XJAlIaUUpRoFUvraBZHQKUpvD5TIeZ1fZQoaAZoCWgPQwjICRNGs8RwQJSGlFKUaBVLyGgWR0ClKcVjZteldX2UKGgGaAloD0MIqwSLwxkfcUCUhpRSlGgVS99oFkdApSnhNdqtYHV9lChoBmgJaA9DCCao4VsYY3FAlIaUUpRoFUvtaBZHQKUqM0l7dBV1fZQoaAZoCWgPQwifyJOkK1NxQJSGlFKUaBVLxmgWR0ClKoFr2xptdX2UKGgGaAloD0MIvoV14x1Wc0CUhpRSlGgVS9doFkdApSqK8pTdcnV9lChoBmgJaA9DCCsv+Z+8fXFAlIaUUpRoFUviaBZHQKUrS+W4Vh11fZQoaAZoCWgPQwiYT1YMF2pxQJSGlFKUaBVL4WgWR0ClK2+Ad4mkdX2UKGgGaAloD0MI8DFYcerLcUCUhpRSlGgVS8poFkdApStmJDVpbnV9lChoBmgJaA9DCDaVRWGX1GxAlIaUUpRoFUvXaBZHQKUrp2Cdz4l1fZQoaAZoCWgPQwhWR450hmxxQJSGlFKUaBVL6mgWR0ClK9h4D9wWdX2UKGgGaAloD0MIRfZBlgW2b0CUhpRSlGgVS/RoFkdApSww1vVEu3V9lChoBmgJaA9DCHPyIhMwMnBAlIaUUpRoFUvSaBZHQKUsY5tFa0R1fZQoaAZoCWgPQwiismFNJdVwQJSGlFKUaBVL22gWR0ClLQojOcDsdX2UKGgGaAloD0MImxw+6UTXb0CUhpRSlGgVS9toFkdApS0Ye9zwMHV9lChoBmgJaA9DCCQLmMDtIHNAlIaUUpRoFUvPaBZHQKUtQkhzNll1fZQoaAZoCWgPQwgFhxdEZNJxQJSGlFKUaBVL2GgWR0ClLWCHRCyAdX2UKGgGaAloD0MIPglszsGzbUCUhpRSlGgVS+FoFkdApS2wfr8iwHV9lChoBmgJaA9DCABw7NkzdnJAlIaUUpRoFUvOaBZHQKUuB8OTaCd1fZQoaAZoCWgPQwhR3Vz8bYFuQJSGlFKUaBVL0GgWR0ClLhpO32EkdX2UKGgGaAloD0MIIF1sWilQcUCUhpRSlGgVS+VoFkdApS4dgYxcmnV9lChoBmgJaA9DCLBXWHA/+3BAlIaUUpRoFUu9aBZHQKUuh4RmK651fZQoaAZoCWgPQwhYWdsUjxBvQJSGlFKUaBVL3GgWR0ClRffLs8gZdX2UKGgGaAloD0MIv2A3bFvRbkCUhpRSlGgVS85oFkdApUYypHZsbnV9lChoBmgJaA9DCFLRWPt7iXJAlIaUUpRoFUv3aBZHQKVGhzH0btJ1fZQoaAZoCWgPQwi8AtGTssdwQJSGlFKUaBVL8GgWR0ClRqUfYBeYdX2UKGgGaAloD0MIUHEceLWPcUCUhpRSlGgVS9BoFkdApUakuYhManV9lChoBmgJaA9DCCnLEMd6anFAlIaUUpRoFUvraBZHQKVHVyrgflp1fZQoaAZoCWgPQwgRcAhVKktxQJSGlFKUaBVL02gWR0ClR5Kyv9tNdX2UKGgGaAloD0MI5ggZyDM6c0CUhpRSlGgVS8poFkdApUeiQA+6iHV9lChoBmgJaA9DCDm0yHY+9XJAlIaUUpRoFUvYaBZHQKVHuFIuoP11fZQoaAZoCWgPQwgI6SlyiEpyQJSGlFKUaBVLvWgWR0ClR9iaiKzidX2UKGgGaAloD0MIHLXC9D3IckCUhpRSlGgVS+poFkdApUhU6DGtIXV9lChoBmgJaA9DCAeY+Q5+8m1AlIaUUpRoFUvYaBZHQKVIyq9XcQB1fZQoaAZoCWgPQwiz0qQU9I5zQJSGlFKUaBVL5mgWR0ClSPSmhufmdX2UKGgGaAloD0MIbvse9de5bECUhpRSlGgVS+RoFkdApUj/f642CXV9lChoBmgJaA9DCLmNBvAWn3BAlIaUUpRoFUvpaBZHQKVJj8lXzUZ1fZQoaAZoCWgPQwj+YOC5t0BwQJSGlFKUaBVLy2gWR0ClSeUxmCiAdX2UKGgGaAloD0MIvr7WpcZCcUCUhpRSlGgVS99oFkdApUoJHf/FSHV9lChoBmgJaA9DCG3lJf8TpnJAlIaUUpRoFUvPaBZHQKVKRYnOSnt1fZQoaAZoCWgPQwjzABb5tYxxQJSGlFKUaBVL8GgWR0ClSwa6J66bdX2UKGgGaAloD0MIejVAaaguWECUhpRSlGgVTegDaBZHQKVLFENvwVl1fZQoaAZoCWgPQwgM6IU7V3JxQJSGlFKUaBVL0WgWR0ClS14uTRpldX2UKGgGaAloD0MI1ZEjnUHCckCUhpRSlGgVTQYBaBZHQKVLaFSKm9B1fZQoaAZoCWgPQwgM5xpmaDZxQJSGlFKUaBVL0WgWR0ClS2trTH81dX2UKGgGaAloD0MIn8iTpKuscECUhpRSlGgVS9doFkdApUus6tDD0nV9lChoBmgJaA9DCNJUT+bfKnJAlIaUUpRoFUv9aBZHQKVL0m3OObR1fZQoaAZoCWgPQwh2Fr1TQYZyQJSGlFKUaBVL+mgWR0ClTBafBeoldX2UKGgGaAloD0MIRgpl4WvbcECUhpRSlGgVS9loFkdApUwYmNR3vHV9lChoBmgJaA9DCNB/D147b29AlIaUUpRoFUvNaBZHQKVMc0/nnuB1fZQoaAZoCWgPQwgFptO6DcJzQJSGlFKUaBVL0mgWR0ClTI4ODrZ8dX2UKGgGaAloD0MIpzy6EZZjb0CUhpRSlGgVS+VoFkdApUyo3rD633V9lChoBmgJaA9DCCCYo8evenJAlIaUUpRoFUvHaBZHQKVNH7rs0Hh1fZQoaAZoCWgPQwhhbCHIgR1xQJSGlFKUaBVL3GgWR0ClTSfPPcBVdX2UKGgGaAloD0MISG5Nuq26bUCUhpRSlGgVS+VoFkdApU2vD1oQF3V9lChoBmgJaA9DCGRz1TzHdXFAlIaUUpRoFUvdaBZHQKVNxXeWOZN1fZQoaAZoCWgPQwh07+GSI7dzQJSGlFKUaBVLz2gWR0ClTigoG6f8dX2UKGgGaAloD0MIdnEbDaDVckCUhpRSlGgVS8hoFkdApU5ZuZThpHV9lChoBmgJaA9DCI1F09nJEnFAlIaUUpRoFUviaBZHQKVOfgGbCrN1fZQoaAZoCWgPQwgTtTS3wjZyQJSGlFKUaBVL1mgWR0ClTp4VZcLSdX2UKGgGaAloD0MIcvikE4kHb0CUhpRSlGgVS+BoFkdApU7LAUL2H3V9lChoBmgJaA9DCCcUIuDQf3BAlIaUUpRoFUvEaBZHQKVOzAdGRV91fZQoaAZoCWgPQwjY0w5/jRNwQJSGlFKUaBVL0mgWR0ClTtq28Zk1dX2UKGgGaAloD0MI8GyP3jDOc0CUhpRSlGgVS7poFkdApU7rO9nK4nV9lChoBmgJaA9DCIUjSKXYUG5AlIaUUpRoFUvfaBZHQKVPcEoOQQt1fZQoaAZoCWgPQwjFG5lHvn1xQJSGlFKUaBVL1WgWR0ClT6BPTG5udX2UKGgGaAloD0MIaverAJ/lcECUhpRSlGgVS9RoFkdApU+4nlXA/XV9lChoBmgJaA9DCEAyHTr9gXFAlIaUUpRoFUvIaBZHQKVQHFLFn7J1fZQoaAZoCWgPQwgxQKIJVGhyQJSGlFKUaBVL2WgWR0ClUGSVv/BFdX2UKGgGaAloD0MIKPBOPr1Kc0CUhpRSlGgVS/9oFkdApVB3c580DXV9lChoBmgJaA9DCEbRAx+D+HBAlIaUUpRoFUvGaBZHQKVQqus90Rx1fZQoaAZoCWgPQwjrw3qjVolzQJSGlFKUaBVLy2gWR0ClUTsE7nxKdX2UKGgGaAloD0MIameY2tLXcECUhpRSlGgVS/BoFkdApVFuJiy6c3V9lChoBmgJaA9DCAOy17s/gHBAlIaUUpRoFUviaBZHQKVR2PiDM/11fZQoaAZoCWgPQwiyZI7lXaNRQJSGlFKUaBVLmWgWR0ClUdlvqC6IdX2UKGgGaAloD0MItykeFxUOc0CUhpRSlGgVS8poFkdApVHmpqASWnV9lChoBmgJaA9DCEAWokOgPXNAlIaUUpRoFUvaaBZHQKVR+6Mir1d1fZQoaAZoCWgPQwjytPzAlcZwQJSGlFKUaBVLx2gWR0ClUfvuw5eadX2UKGgGaAloD0MIFqbvNQQRckCUhpRSlGgVS+ZoFkdApVIK3RXwLHV9lChoBmgJaA9DCM9pFmj3l25AlIaUUpRoFUvRaBZHQKVSA1jy4F11fZQoaAZoCWgPQwjePUD3pWlwQJSGlFKUaBVL0WgWR0ClUhE+gUUPdX2UKGgGaAloD0MIvRqgNNS8ckCUhpRSlGgVS+5oFkdApVNJ/Tb35HV9lChoBmgJaA9DCPpjWpvGB3FAlIaUUpRoFUvzaBZHQKVTeYekpJB1fZQoaAZoCWgPQwgvNNdp5BFzQJSGlFKUaBVL32gWR0ClU5eSKWLQdX2UKGgGaAloD0MIh07Pu3FwcUCUhpRSlGgVS9BoFkdApVOoffXPJXV9lChoBmgJaA9DCJuuJ7ruUHNAlIaUUpRoFUvJaBZHQKVTy59Vmz11fZQoaAZoCWgPQwgO95Fbk8FuQJSGlFKUaBVL2GgWR0ClU9TewcHXdX2UKGgGaAloD0MIC0YldYLncECUhpRSlGgVS8doFkdApVRJCQcPv3V9lChoBmgJaA9DCIsyG2SSm25AlIaUUpRoFUvQaBZHQKVUoO938oB1fZQoaAZoCWgPQwgHYtnM4QZwQJSGlFKUaBVL02gWR0ClVQ938n/ldX2UKGgGaAloD0MIQIS4cvbGckCUhpRSlGgVS9FoFkdApVUVCkXUIHV9lChoBmgJaA9DCBMQk3AhFXJAlIaUUpRoFUvPaBZHQKVVIoG6f8N1fZQoaAZoCWgPQwhKDAIrR4FxQJSGlFKUaBVL3mgWR0ClVWd1EE1VdX2UKGgGaAloD0MIHxDoTNqpcECUhpRSlGgVS+FoFkdApVV7cO9WZXV9lChoBmgJaA9DCNnNjH70FXFAlIaUUpRoFUvnaBZHQKVVhCtRvWJ1fZQoaAZoCWgPQwj4M7xZQ+5xQJSGlFKUaBVL4mgWR0ClVYVLi++NdX2UKGgGaAloD0MIv9GOG/6+ckCUhpRSlGgVS/loFkdApVWktEofCHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 630,
79
+ "n_steps": 1024,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 6,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94dd02c3ff84e166a4d59d3353f35bda30340e022f2ef06fa714b0a3e4982910
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:708b76eaf6a073fe7927ea175fd47bafaf8997eece0ff65d107b357cb60bbfb6
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ecdb591f960ce0a2b8392e7c1fc0e505c3fd84073b04b46567a2ecf662a2202
3
- size 223419
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4664303e0d5cd069c84b6a4d93223b4258789748424d61ae1010b7cb349a20e2
3
+ size 183234
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 199.6539454238002, "std_reward": 71.35709394507825, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T08:14:02.401001"}
 
1
+ {"mean_reward": 279.4700099887549, "std_reward": 18.862408920688313, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T13:06:20.706601"}