File size: 13,629 Bytes
3cbf7e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Construct the Word/Entity Graph from text samples or pre-defined word-pairs relations
Approaches: NPMI, PMI, pre-defined word-pairs relations.
You may (or not) first preprocess the text before build the graph,
e.g. Stopword removal, String cleaning, Stemming, Nomolization, Lemmatization
"""
from collections import Counter
from math import log
from typing import Dict, List, Tuple
import torch
import numpy as np
import scipy.sparse as sp
from transformers.tokenization_utils import PreTrainedTokenizerBase
from transformers.configuration_utils import PretrainedConfig
ENGLISH_STOP_WORDS = frozenset(
{
"herself",
"each",
"him",
"been",
"only",
"yourselves",
"into",
"where",
"them",
"very",
"we",
"that",
"re",
"too",
"some",
"what",
"those",
"me",
"whom",
"have",
"yours",
"an",
"during",
"any",
"nor",
"ourselves",
"has",
"do",
"when",
"about",
"same",
"our",
"then",
"himself",
"their",
"all",
"no",
"a",
"hers",
"off",
"why",
"how",
"more",
"between",
"until",
"not",
"over",
"your",
"by",
"here",
"most",
"above",
"up",
"of",
"is",
"after",
"from",
"being",
"i",
"as",
"other",
"so",
"her",
"ours",
"on",
"because",
"against",
"and",
"out",
"had",
"these",
"at",
"both",
"down",
"you",
"can",
"she",
"few",
"the",
"if",
"it",
"to",
"but",
"its",
"be",
"he",
"once",
"further",
"such",
"there",
"through",
"are",
"themselves",
"which",
"in",
"now",
"his",
"yourself",
"this",
"were",
"below",
"should",
"my",
"myself",
"am",
"or",
"while",
"itself",
"again",
"with",
"they",
"will",
"own",
"than",
"before",
"under",
"was",
"for",
"who",
}
)
class WordGraph:
"""
Word graph based on adjacency matrix, construct from text samples or pre-defined word-pair relations
Params:
`rows`: List[str] of text samples, or pre-defined word-pair relations: List[Tuple[str, str, float]]
`tokenizer`: The same pretrained tokenizer that is used for the model late.
`window_size`: Available only for statistics generation (rows is text samples).
Size of the sliding window for collecting the pieces of text
and further calculate the NPMI value, default is 20.
`algorithm`: Available only for statistics generation (rows is text samples) -- "npmi" or "pmi", default is "npmi".
`edge_threshold`: Available only for statistics generation (rows is text samples). Graph edge value threshold, default is 0. Edge value is between -1 to 1.
`remove_stopwords`: Build word graph with the words that are not stopwords, default is False.
`min_freq_to_keep`: Available only for statistics generation (rows is text samples). Build word graph with the words that occurred at least n times in the corpus, default is 2.
Properties:
`adjacency_matrix`: scipy.sparse.csr_matrix, the word graph in sparse adjacency matrix form.
`vocab_indices`: indices of word graph vocabulary words.
`wgraph_id_to_tokenizer_id_map`: map from word graph vocabulary word id to tokenizer vocabulary word id.
"""
def __init__(
self,
rows: list,
tokenizer: PreTrainedTokenizerBase,
window_size=20,
algorithm="npmi",
edge_threshold=0.0,
remove_stopwords=False,
min_freq_to_keep=2,
):
if type(rows[0]) == tuple:
(
self.adjacency_matrix,
self.vocab_indices,
self.wgraph_id_to_tokenizer_id_map,
) = _build_predefined_graph(rows, tokenizer, remove_stopwords)
else:
(
self.adjacency_matrix,
self.vocab_indices,
self.wgraph_id_to_tokenizer_id_map,
) = _build_pmi_graph(
rows, tokenizer, window_size, algorithm, edge_threshold, remove_stopwords, min_freq_to_keep
)
def normalized(self):
return _normalize_adj(self.adjacency_matrix) if self.adjacency_matrix is not None else None
def to_torch_sparse(self):
if self.adjacency_matrix is None:
return None
adj = _normalize_adj(self.adjacency_matrix)
return _scipy_to_torch(adj)
def _normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
rowsum = np.array(adj.sum(1)) # D-degree matrix
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.0
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt)
def _scipy_to_torch(sparse):
sparse = sparse.tocoo() if sparse.getformat() != "coo" else sparse
i = torch.LongTensor(np.vstack((sparse.row, sparse.col)))
v = torch.from_numpy(sparse.data)
return torch.sparse_coo_tensor(i, v, torch.Size(sparse.shape)).coalesce()
def _delete_special_terms(words: list, terms: set):
return set([w for w in words if w not in terms])
def _build_pmi_graph(
texts: List[str],
tokenizer: PreTrainedTokenizerBase,
window_size=20,
algorithm="npmi",
edge_threshold=0.0,
remove_stopwords=False,
min_freq_to_keep=2,
) -> Tuple[sp.csr_matrix, Dict[str, int], Dict[int, int]]:
"""
Build statistical word graph from text samples using PMI or NPMI algorithm.
"""
# Tokenize the text samples. The tokenizer should be same as that in the combined Bert-like model.
# Remove stopwords and special terms
# Get vocabulary and the word frequency
words_to_remove = (
set({"[CLS]", "[SEP]"}).union(ENGLISH_STOP_WORDS) if remove_stopwords else set({"[CLS]", "[SEP]"})
)
vocab_counter = Counter()
texts_words = []
for t in texts:
words = tokenizer.tokenize(t)
words = _delete_special_terms(words, words_to_remove)
if len(words) > 0:
vocab_counter.update(Counter(words))
texts_words.append(words)
# Set [PAD] as the head of vocabulary
# Remove word with freq<n and re generate texts
new_vocab_counter = Counter({"[PAD]": 0})
new_vocab_counter.update(
Counter({k: v for k, v in vocab_counter.items() if v >= min_freq_to_keep})
if min_freq_to_keep > 1
else vocab_counter
)
vocab_counter = new_vocab_counter
# Generate new texts by removing words with freq<n
if min_freq_to_keep > 1:
texts_words = [list(filter(lambda w: vocab_counter[w] >= min_freq_to_keep, words)) for words in texts_words]
texts = [" ".join(words).strip() for words in texts_words if len(words) > 0]
vocab_size = len(vocab_counter)
vocab = list(vocab_counter.keys())
assert vocab[0] == "[PAD]"
vocab_indices = {k: i for i, k in enumerate(vocab)}
# Get the pieces from sliding windows
windows = []
for t in texts:
words = t.split()
word_ids = [vocab_indices[w] for w in words]
length = len(word_ids)
if length <= window_size:
windows.append(word_ids)
else:
for j in range(length - window_size + 1):
word_ids = word_ids[j : j + window_size]
windows.append(word_ids)
# Get the window-count that every word appeared (count 1 for the same window).
# Get window-count that every word-pair appeared (count 1 for the same window).
vocab_window_counter = Counter()
word_pair_window_counter = Counter()
for word_ids in windows:
word_ids = list(set(word_ids))
vocab_window_counter.update(Counter(word_ids))
word_pair_window_counter.update(
Counter(
[
f(i, j)
# (word_ids[i], word_ids[j])
for i in range(1, len(word_ids))
for j in range(i)
# adding inverse pair
for f in (lambda x, y: (word_ids[x], word_ids[y]), lambda x, y: (word_ids[y], word_ids[x]))
]
)
)
# Calculate NPMI
vocab_adj_row = []
vocab_adj_col = []
vocab_adj_weight = []
total_windows = len(windows)
for wid_pair in word_pair_window_counter.keys():
i, j = wid_pair
pair_count = word_pair_window_counter[wid_pair]
i_count = vocab_window_counter[i]
j_count = vocab_window_counter[j]
value = (
(log(1.0 * i_count * j_count / (total_windows**2)) / log(1.0 * pair_count / total_windows) - 1)
if algorithm == "npmi"
else (log((1.0 * pair_count / total_windows) / (1.0 * i_count * j_count / (total_windows**2))))
)
if value > edge_threshold:
vocab_adj_row.append(i)
vocab_adj_col.append(j)
vocab_adj_weight.append(value)
# Build vocabulary adjacency matrix
vocab_adj = sp.csr_matrix(
(vocab_adj_weight, (vocab_adj_row, vocab_adj_col)),
shape=(vocab_size, vocab_size),
dtype=np.float32,
)
vocab_adj.setdiag(1.0)
# Padding the first row and column, "[PAD]" is the first word in the vocabulary.
assert vocab_adj[0, :].sum() == 1
assert vocab_adj[:, 0].sum() == 1
vocab_adj[:, 0] = 0
vocab_adj[0, :] = 0
wgraph_id_to_tokenizer_id_map = {v: tokenizer.vocab[k] for k, v in vocab_indices.items()}
wgraph_id_to_tokenizer_id_map = dict(sorted(wgraph_id_to_tokenizer_id_map.items()))
return (
vocab_adj,
vocab_indices,
wgraph_id_to_tokenizer_id_map,
)
def _build_predefined_graph(
words_relations: List[Tuple[str, str, float]], tokenizer: PreTrainedTokenizerBase, remove_stopwords: bool = False
) -> Tuple[sp.csr_matrix, Dict[str, int], Dict[int, int]]:
"""
Build pre-defined wgraph from a list of word pairs and their pre-defined relations (edge value).
"""
# Tokenize the text samples. The tokenizer should be same as that in the combined Bert-like model.
# Remove stopwords and special terms
# Get vocabulary and the word frequency
words_to_remove = (
set({"[CLS]", "[SEP]"}).union(ENGLISH_STOP_WORDS) if remove_stopwords else set({"[CLS]", "[SEP]"})
)
vocab_counter = Counter({"[PAD]": 0})
word_pairs = {}
for w1, w2, v in words_relations:
w1_subwords = tokenizer.tokenize(w1)
w1_subwords = _delete_special_terms(w1_subwords, words_to_remove)
w2_subwords = tokenizer.tokenize(w2)
w2_subwords = _delete_special_terms(w2_subwords, words_to_remove)
vocab_counter.update(Counter(w1_subwords))
vocab_counter.update(Counter(w2_subwords))
for sw1 in w1_subwords:
for sw2 in w2_subwords:
if sw1 != sw2:
word_pairs.setdefault((sw1, sw2), v)
vocab_size = len(vocab_counter)
vocab = list(vocab_counter.keys())
assert vocab[0] == "[PAD]"
vocab_indices = {k: i for i, k in enumerate(vocab)}
# bulid adjacency matrix
vocab_adj_row = []
vocab_adj_col = []
vocab_adj_weight = []
for (w1, w2), v in word_pairs.items():
vocab_adj_row.append(vocab_indices[w1])
vocab_adj_col.append(vocab_indices[w2])
vocab_adj_weight.append(v)
# adding inverse
vocab_adj_row.append(vocab_indices[w2])
vocab_adj_col.append(vocab_indices[w1])
vocab_adj_weight.append(v)
# Build vocabulary adjacency matrix
vocab_adj = sp.csr_matrix(
(vocab_adj_weight, (vocab_adj_row, vocab_adj_col)),
shape=(vocab_size, vocab_size),
dtype=np.float32,
)
vocab_adj.setdiag(1.0)
# Padding the first row and column, "[PAD]" is the first word in the vocabulary.
assert vocab_adj[0, :].sum() == 1
assert vocab_adj[:, 0].sum() == 1
vocab_adj[:, 0] = 0
vocab_adj[0, :] = 0
wgraph_id_to_tokenizer_id_map = {v: tokenizer.vocab[k] for k, v in vocab_indices.items()}
wgraph_id_to_tokenizer_id_map = dict(sorted(wgraph_id_to_tokenizer_id_map.items()))
return (
vocab_adj,
vocab_indices,
wgraph_id_to_tokenizer_id_map,
)
# TODO: build knowledge graph from a list of RDF triples
# def _build_knowledge_graph
|