zhibinlu commited on
Commit
14bd3ef
1 Parent(s): b5a178d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - exbert
5
+ license: apache-2.0
6
+ datasets:
7
+ - bookcorpus
8
+ - wikipedia
9
+ ---
10
+
11
+ # VGCN-BERT (DistilBERT based, uncased)
12
+
13
+ This model is a VGCN-BERT model based on [DistilBert-base-uncased](https://huggingface.co/distilbert-base-uncased) version. The original paper is [VGCN-BERT](https://arxiv.org/abs/2004.05707).
14
+
15
+ ### How to use
16
+
17
+ - First prepare WGraph symmetric adjacency matrix
18
+
19
+ ```python
20
+ import transformers as tfr
21
+ from transformers.models.vgcn_bert.modeling_graph import WordGraph,_normalize_adj
22
+
23
+ tokenizer = tfr.AutoTokenizer.from_pretrained(
24
+ "zhibinlu/vgcn-bert-distilbert-base-uncased"
25
+ )
26
+ # 1st method: Build graph using NPMI statistical method from training corpus
27
+ wgraph = WordGraph(rows=train_valid_df["text"], tokenizer=tokenizer)
28
+ # 2nd method: Build graph from pre-defined entity relationship tuple with weight
29
+ entity_relations = [
30
+ ("dog", "labrador", 0.6),
31
+ ("cat", "garfield", 0.7),
32
+ ("city", "montreal", 0.8),
33
+ ("weather", "rain", 0.3),
34
+ ]
35
+ wgraph = WordGraph(rows=entity_relations, tokenizer=tokenizer)
36
+ ```
37
+
38
+ - Then instantiate VGCN-BERT model with your WGraphs (support multiple graphs).
39
+
40
+ ```python
41
+ from transformers.models.vgcn_bert.modeling_vgcn_bert import VGCNBertModel
42
+ model = VGCNBertModel.from_pretrained(
43
+ "zhibinlu/vgcn-bert-distilbert-base-uncased", trust_remote_code=True,
44
+ wgraphs=[wgraph.to_torch_sparse()],
45
+ wgraph_id_to_tokenizer_id_maps=[wgraph.wgraph_id_to_tokenizer_id_map])
46
+ )
47
+ text = "Replace me by any text you'd like."
48
+ encoded_input = tokenizer(text, return_tensors="pt")
49
+ output = model(**encoded_input)
50
+ ```
51
+
52
+
53
+ ## Fine-tune model
54
+
55
+ It's better fin-tune vgcn-bert model for the specific tasks.