File size: 1,933 Bytes
3386a8a
 
 
2e31585
 
3386a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e31585
3386a8a
 
 
 
 
 
 
 
 
2e31585
 
3386a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d50315
 
 
 
 
 
 
3386a8a
 
 
 
 
9d50315
3386a8a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
model-index:
- name: vit-base-beans
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: beans
      type: beans
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9924812030075187
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-beans

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0818
- Accuracy: 0.9925

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 0.254         | 1.0   | 130  | 0.9624   | 0.2244          |
| 0.2885        | 2.0   | 260  | 0.9925   | 0.1098          |
| 0.1555        | 3.0   | 390  | 0.9850   | 0.1041          |
| 0.092         | 4.0   | 520  | 0.9925   | 0.0818          |
| 0.1591        | 5.0   | 650  | 0.9850   | 0.0826          |


### Framework versions

- Transformers 4.29.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3