zjoe commited on
Commit
f15e7c7
1 Parent(s): ab26453

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13a3c5aa89dcede6bad790ee357e26dacd2430257326797555a6217c89db0722
3
+ size 122851
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bcb219fbd90>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7bcb219f3380>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694964160242935770,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8p2ZPycobL78ogY++SCuv/a2gD8IpAY+Sj6gvkDAzb6LpQY+A+ifv/GwRb/opQY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAecS8PylvL79pVcg/SDNGv6KFyL56MYm/CTuQP4H0UD9CfjU/zFG8Pw3bvL96MYm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqys4+5iqXv/pQPb8Wx3c/M2RbPxbGaDwHDpw/8p2ZPycobL78ogY+ZCzhu8SVbbxORSy8x+anvKSUEDyT72k9+sOyuzmAnbxr3JW8aPxgPkes3j51+Ee9Za86QE+spD/Mj0i+Dwdqv/kgrr/2toA/CKQGPgnx47srQ2y8rTMnvPZ3q7wqqAs8iRFqPdI+b7vamK68XN+VvIjh6T51c4+/nJ70vi7PUD5Q3bK+pnfJPqsPnD9KPqC+QMDNvoulBj44dem7n+JyvF3mLLyxnqW86vcSPJPvaT36w7K7OYCdvHe1lbw8+TI/bpC/Pk+QDD9pYK0+18aRP/nanD2eEmK/A+ifv/GwRb/opQY+8aXmuziQbLzZzxm80iehvOdCCzyT72k9tsOyu1CAnbzKN4+8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 1.2001326 -0.23062192 0.13148111]\n [-1.3603812 1.0055835 0.1314851 ]\n [-0.31297523 -0.40185738 0.13149087]\n [-1.2492679 -0.77223116 0.13149226]]",
34
+ "desired_goal": "[[ 1.4747459 -0.6852899 1.5651065 ]\n [-0.77422 -0.39164454 -1.0718224 ]\n [ 1.1268016 0.81623083 0.7089578 ]\n [ 1.4712462 -1.4754349 -1.0718224 ]]",
35
+ "observation": "[[ 0.40389186 -1.1809967 -0.73951685 0.96788156 0.85699767 0.01420738\n 1.2191781 1.2001326 -0.23062192 0.13148111 -0.00687175 -0.01450104\n -0.01051457 -0.02049579 0.0088245 0.05711324 -0.00545549 -0.01922618\n -0.01829358]\n [ 0.21971285 0.43490812 -0.04882093 2.9169552 1.2865084 -0.19586104\n -0.9141702 -1.3603812 1.0055835 0.1314851 -0.00695622 -0.01442031\n -0.01020519 -0.02093123 0.00852398 0.05714563 -0.00365059 -0.02131312\n -0.01829498]\n [ 0.4567988 -1.120711 -0.4777726 0.20391533 -0.34934473 0.39349097\n 1.2192281 -0.31297523 -0.40185738 0.13149087 -0.00712457 -0.01482454\n -0.01055297 -0.02021727 0.00897024 0.05711324 -0.00545549 -0.01922618\n -0.01827501]\n [ 0.6991155 0.3741488 0.549077 0.33862618 1.1388806 0.07658953\n -0.8830966 -1.2492679 -0.77223116 0.13149226 -0.00703882 -0.01443868\n -0.00938793 -0.01967231 0.00849984 0.05711324 -0.00545546 -0.01922622\n -0.01748266]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8nJsPc9O7T0K16M8ScHMvVps9r0K16M8oTjMvebBPj0K16M89NEBPmj32r0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAH0OTPeLaqL3EaBI+vyLlvWIBTLwsyqQ92+mdPcqorL0K16M8wEWxPOPK4j0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA8nJsPc9O7T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEnBzL1abPa9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAChOMy95sE+PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA9NEBPmj32r0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.05772681 0.11587297 0.02 ]\n [-0.09997804 -0.12032385 0.02 ]\n [-0.09971739 0.04657163 0.02 ]\n [ 0.12677747 -0.1069172 0.02 ]]",
45
+ "desired_goal": "[[ 0.07190537 -0.08244874 0.14297777]\n [-0.11188268 -0.0124515 0.08046374]\n [ 0.0771062 -0.08430631 0.02 ]\n [ 0.0216397 0.11073854 0.02 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.7726808e-02\n 1.1587297e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.9978037e-02\n -1.2032385e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.9717386e-02\n 4.6571635e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2677747e-01\n -1.0691720e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CpurOFpPAPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpu8rpzLfUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpu7/zBhx6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvHbMxGlRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvHPoNd7fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvZF5GBnSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvYWVNYbLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpvj04iosJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvkG3nZCfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv0gNwzcidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpvv6gM+eOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv6Jd0JWvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv4SJj2BbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwGRtHhCMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwAsvIwM6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwK5h8YygdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwJb48EFGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwXahg3LndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwSaK+BYndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwciDujREdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpwa274BV/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwpC7btZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwkV6E8JVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwumrsByTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpws2joIOZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpw7HzxwyZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpw161TisGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxAYtg8bJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpw+fustCidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cpw+4uK4x2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxM4zJp35dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxHXsolUqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxRnjABT5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxP9f9gnddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxdrL6k6+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxYz9bX6JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxjPl+3H8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpxh01qFh5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxvQTM7lrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxqLs0HhTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpx0Pegte2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxyvF3pwCdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpxzLyUcGUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyAKifxtpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpx7ZTyauwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyFkgntv5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyEhHCoCNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpySFpPAO8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyM0tqYZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyXHZsbeedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyWCKrJbMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyjNtZV4pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyeAnlXA/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyoOEVWS2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpynMtkFwDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpy06lDWsjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpywFDfFaTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpy6SnLq2SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpy5Uw8GLUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzGnhsImgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzBnE/B3zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzL6ol2NedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzLIgNgBtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzYkKmbb2dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpzY3vH93sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzTNCJGe+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzdSp71IzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpzb4aYNRWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpzpc1n/T9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzkX/o7mudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpzuu14Pf9dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpzvC/GlyjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpztgYHgP3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpz7kJ0GNadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpz2Sv1UVBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0A5Dqnm8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpz/mT9sJqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0NQmNR3vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0Hi53C9AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0SJVbRnfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0Qhy0a60dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0e1aW5YpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0Z6TwDvFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0k8D0UXYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0kGucMEzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0zxR/EwWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0z72L5ymdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1ALZi/fwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1AfxDst1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1SI/zJ6qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1QD3Ehq1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1bhSUC7sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1cDIikftdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1teHSF4+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1sSmhufmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp14JlJ6IFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp14yaEzwddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp2LSCFsYVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp2L+pGWledX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp2W6S1Vo6dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:303e0e190bff88544ebd8618716930a20e64b969b65021557fa6578b30618855
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9ce93ac442a26986d88360d2947400c03574228543a126413433b751c525496
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bcb219fbd90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bcb219f3380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694964160242935770, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8p2ZPycobL78ogY++SCuv/a2gD8IpAY+Sj6gvkDAzb6LpQY+A+ifv/GwRb/opQY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAecS8PylvL79pVcg/SDNGv6KFyL56MYm/CTuQP4H0UD9CfjU/zFG8Pw3bvL96MYm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqys4+5iqXv/pQPb8Wx3c/M2RbPxbGaDwHDpw/8p2ZPycobL78ogY+ZCzhu8SVbbxORSy8x+anvKSUEDyT72k9+sOyuzmAnbxr3JW8aPxgPkes3j51+Ee9Za86QE+spD/Mj0i+Dwdqv/kgrr/2toA/CKQGPgnx47srQ2y8rTMnvPZ3q7wqqAs8iRFqPdI+b7vamK68XN+VvIjh6T51c4+/nJ70vi7PUD5Q3bK+pnfJPqsPnD9KPqC+QMDNvoulBj44dem7n+JyvF3mLLyxnqW86vcSPJPvaT36w7K7OYCdvHe1lbw8+TI/bpC/Pk+QDD9pYK0+18aRP/nanD2eEmK/A+ifv/GwRb/opQY+8aXmuziQbLzZzxm80iehvOdCCzyT72k9tsOyu1CAnbzKN4+8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.2001326 -0.23062192 0.13148111]\n [-1.3603812 1.0055835 0.1314851 ]\n [-0.31297523 -0.40185738 0.13149087]\n [-1.2492679 -0.77223116 0.13149226]]", "desired_goal": "[[ 1.4747459 -0.6852899 1.5651065 ]\n [-0.77422 -0.39164454 -1.0718224 ]\n [ 1.1268016 0.81623083 0.7089578 ]\n [ 1.4712462 -1.4754349 -1.0718224 ]]", "observation": "[[ 0.40389186 -1.1809967 -0.73951685 0.96788156 0.85699767 0.01420738\n 1.2191781 1.2001326 -0.23062192 0.13148111 -0.00687175 -0.01450104\n -0.01051457 -0.02049579 0.0088245 0.05711324 -0.00545549 -0.01922618\n -0.01829358]\n [ 0.21971285 0.43490812 -0.04882093 2.9169552 1.2865084 -0.19586104\n -0.9141702 -1.3603812 1.0055835 0.1314851 -0.00695622 -0.01442031\n -0.01020519 -0.02093123 0.00852398 0.05714563 -0.00365059 -0.02131312\n -0.01829498]\n [ 0.4567988 -1.120711 -0.4777726 0.20391533 -0.34934473 0.39349097\n 1.2192281 -0.31297523 -0.40185738 0.13149087 -0.00712457 -0.01482454\n -0.01055297 -0.02021727 0.00897024 0.05711324 -0.00545549 -0.01922618\n -0.01827501]\n [ 0.6991155 0.3741488 0.549077 0.33862618 1.1388806 0.07658953\n -0.8830966 -1.2492679 -0.77223116 0.13149226 -0.00703882 -0.01443868\n -0.00938793 -0.01967231 0.00849984 0.05711324 -0.00545546 -0.01922622\n -0.01748266]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8nJsPc9O7T0K16M8ScHMvVps9r0K16M8oTjMvebBPj0K16M89NEBPmj32r0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAH0OTPeLaqL3EaBI+vyLlvWIBTLwsyqQ92+mdPcqorL0K16M8wEWxPOPK4j0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA8nJsPc9O7T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEnBzL1abPa9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAChOMy95sE+PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA9NEBPmj32r0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.05772681 0.11587297 0.02 ]\n [-0.09997804 -0.12032385 0.02 ]\n [-0.09971739 0.04657163 0.02 ]\n [ 0.12677747 -0.1069172 0.02 ]]", "desired_goal": "[[ 0.07190537 -0.08244874 0.14297777]\n [-0.11188268 -0.0124515 0.08046374]\n [ 0.0771062 -0.08430631 0.02 ]\n [ 0.0216397 0.11073854 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.7726808e-02\n 1.1587297e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.9978037e-02\n -1.2032385e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.9717386e-02\n 4.6571635e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2677747e-01\n -1.0691720e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CpurOFpPAPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpu8rpzLfUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpu7/zBhx6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvHbMxGlRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvHPoNd7fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvZF5GBnSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvYWVNYbLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpvj04iosJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvkG3nZCfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv0gNwzcidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpvv6gM+eOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv6Jd0JWvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv4SJj2BbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwGRtHhCMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwAsvIwM6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwK5h8YygdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwJb48EFGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwXahg3LndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwSaK+BYndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwciDujREdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpwa274BV/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwpC7btZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwkV6E8JVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwumrsByTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpws2joIOZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpw7HzxwyZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpw161TisGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxAYtg8bJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpw+fustCidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cpw+4uK4x2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxM4zJp35dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxHXsolUqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxRnjABT5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxP9f9gnddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxdrL6k6+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxYz9bX6JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxjPl+3H8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpxh01qFh5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxvQTM7lrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxqLs0HhTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpx0Pegte2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpxyvF3pwCdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpxzLyUcGUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyAKifxtpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpx7ZTyauwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyFkgntv5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyEhHCoCNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpySFpPAO8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyM0tqYZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyXHZsbeedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyWCKrJbMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyjNtZV4pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyeAnlXA/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpyoOEVWS2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpynMtkFwDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpy06lDWsjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpywFDfFaTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpy6SnLq2SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpy5Uw8GLUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzGnhsImgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzBnE/B3zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzL6ol2NedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzLIgNgBtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzYkKmbb2dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpzY3vH93sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzTNCJGe+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzdSp71IzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpzb4aYNRWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpzpc1n/T9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpzkX/o7mudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpzuu14Pf9dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpzvC/GlyjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpztgYHgP3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpz7kJ0GNadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpz2Sv1UVBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0A5Dqnm8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpz/mT9sJqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0NQmNR3vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0Hi53C9AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0SJVbRnfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0Qhy0a60dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0e1aW5YpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0Z6TwDvFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0k8D0UXYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0kGucMEzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0zxR/EwWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp0z72L5ymdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1ALZi/fwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1AfxDst1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1SI/zJ6qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1QD3Ehq1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1bhSUC7sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1cDIikftdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1teHSF4+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp1sSmhufmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp14JlJ6IFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp14yaEzwddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp2LSCFsYVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp2L+pGWledX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cp2W6S1Vo6dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (839 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-17T16:17:52.416503"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a13af0c324b7d23ee911c6c713565ebe434c2d1cc368ee9e696206bd528dc9e4
3
+ size 3013