Model save
Browse files- README.md +79 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: 10-finetuned-ausSpiders2000
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 10-finetuned-ausSpiders2000
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co/zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0508
|
24 |
+
- Accuracy: 0.9858
|
25 |
+
- Precision: 0.9892
|
26 |
+
- Recall: 0.9865
|
27 |
+
- F1: 0.9878
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0005
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 32
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.1
|
56 |
+
- num_epochs: 10
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
62 |
+
| 0.1997 | 1.0 | 281 | 0.2264 | 0.9281 | 0.9395 | 0.8869 | 0.9045 |
|
63 |
+
| 0.17 | 2.0 | 563 | 0.1382 | 0.9565 | 0.8540 | 0.8266 | 0.8381 |
|
64 |
+
| 0.21 | 3.0 | 845 | 0.1404 | 0.9583 | 0.9747 | 0.9064 | 0.9349 |
|
65 |
+
| 0.1976 | 4.0 | 1127 | 0.0987 | 0.9689 | 0.9716 | 0.8917 | 0.9128 |
|
66 |
+
| 0.178 | 5.0 | 1408 | 0.1219 | 0.9636 | 0.9393 | 0.9600 | 0.9472 |
|
67 |
+
| 0.0659 | 6.0 | 1690 | 0.0804 | 0.9813 | 0.9815 | 0.9801 | 0.9807 |
|
68 |
+
| 0.0917 | 7.0 | 1972 | 0.1062 | 0.9734 | 0.9765 | 0.9676 | 0.9716 |
|
69 |
+
| 0.108 | 8.0 | 2254 | 0.0568 | 0.9849 | 0.9868 | 0.9794 | 0.9828 |
|
70 |
+
| 0.1151 | 9.0 | 2535 | 0.0508 | 0.9858 | 0.9876 | 0.9863 | 0.9869 |
|
71 |
+
| 0.049 | 9.97 | 2810 | 0.0508 | 0.9858 | 0.9892 | 0.9865 | 0.9878 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.33.3
|
77 |
+
- Pytorch 2.0.1+cu117
|
78 |
+
- Datasets 2.14.5
|
79 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 350940477
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfea9dcd06ba437332bc0a42e8df6cbe0bdc3cf8db0c7f5d87429b3b7faa921d
|
3 |
size 350940477
|