Upload _gptqlora.py
Browse files- _gptqlora.py +613 -0
_gptqlora.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This source code is licensed under the MIT license found in the
|
2 |
+
# LICENSE file in the root directory of this source tree.
|
3 |
+
|
4 |
+
from safetensors import safe_open
|
5 |
+
from safetensors.torch import load_model, save_model, load_file
|
6 |
+
|
7 |
+
|
8 |
+
from collections import defaultdict
|
9 |
+
import copy
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
from os.path import exists, join, isdir
|
13 |
+
from dataclasses import dataclass, field
|
14 |
+
import sys
|
15 |
+
from typing import Optional, Dict, Sequence
|
16 |
+
import numpy as np
|
17 |
+
from tqdm import tqdm
|
18 |
+
import logging
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import transformers
|
22 |
+
from torch.nn.utils.rnn import pad_sequence
|
23 |
+
import argparse
|
24 |
+
from transformers import (
|
25 |
+
AutoTokenizer,
|
26 |
+
AutoModelForCausalLM,
|
27 |
+
LineByLineTextDataset,
|
28 |
+
set_seed,
|
29 |
+
Seq2SeqTrainer,
|
30 |
+
Trainer,
|
31 |
+
LlamaTokenizerFast
|
32 |
+
)
|
33 |
+
|
34 |
+
from trl import SFTTrainer
|
35 |
+
from datasets import load_dataset
|
36 |
+
import evaluate
|
37 |
+
|
38 |
+
from peft import (
|
39 |
+
LoraConfig,
|
40 |
+
get_peft_model_state_dict,
|
41 |
+
set_peft_model_state_dict,
|
42 |
+
PeftModel
|
43 |
+
)
|
44 |
+
from peft.tuners.lora import LoraLayer
|
45 |
+
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
46 |
+
from auto_gptq.utils.peft_utils import get_gptq_peft_model, GPTQLoraConfig
|
47 |
+
from auto_gptq import AutoGPTQForCausalLM
|
48 |
+
from auto_gptq.nn_modules.qlinear import GeneralQuantLinear
|
49 |
+
|
50 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
51 |
+
|
52 |
+
logger = logging.getLogger(__name__)
|
53 |
+
|
54 |
+
IGNORE_INDEX = -100
|
55 |
+
DEFAULT_PAD_TOKEN = "[PAD]"
|
56 |
+
|
57 |
+
import os
|
58 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
59 |
+
|
60 |
+
def prepare_model_for_int8_training(model, use_gradient_checkpointing=True):
|
61 |
+
r"""
|
62 |
+
This method wraps the entire protocol for preparing a model before running a training. This includes:
|
63 |
+
1- Cast the layernorm in fp32 2- making output embedding layer require grads 3- Add the upcasting of the lm
|
64 |
+
head to fp32
|
65 |
+
|
66 |
+
Args:
|
67 |
+
model, (`transformers.PreTrainedModel`):
|
68 |
+
The loaded model from `transformers`
|
69 |
+
"""
|
70 |
+
for name, param in model.named_parameters():
|
71 |
+
# freeze base model's layers
|
72 |
+
param.requires_grad = False
|
73 |
+
|
74 |
+
if use_gradient_checkpointing:
|
75 |
+
# For backward compatibility
|
76 |
+
if hasattr(model, "enable_input_require_grads"):
|
77 |
+
model.enable_input_require_grads()
|
78 |
+
else:
|
79 |
+
|
80 |
+
def make_inputs_require_grad(module, input, output):
|
81 |
+
output.requires_grad_(True)
|
82 |
+
|
83 |
+
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
84 |
+
|
85 |
+
# enable gradient checkpointing for memory efficiency
|
86 |
+
model.gradient_checkpointing_enable()
|
87 |
+
|
88 |
+
return model
|
89 |
+
|
90 |
+
@dataclass
|
91 |
+
class ModelArguments:
|
92 |
+
model_path: Optional[str] = field(
|
93 |
+
default="./src/"
|
94 |
+
)
|
95 |
+
src_lora_path: Optional[str] = field(
|
96 |
+
default=None,
|
97 |
+
)
|
98 |
+
trust_remote_code: Optional[bool] = field(
|
99 |
+
default=False,
|
100 |
+
metadata={"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."}
|
101 |
+
)
|
102 |
+
|
103 |
+
@dataclass
|
104 |
+
class DataArguments:
|
105 |
+
eval_dataset_size: int = field(
|
106 |
+
default=1024, metadata={"help": "Size of validation dataset."}
|
107 |
+
)
|
108 |
+
max_train_samples: Optional[int] = field(
|
109 |
+
default=None,
|
110 |
+
metadata={
|
111 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
112 |
+
"value if set."
|
113 |
+
},
|
114 |
+
)
|
115 |
+
offload_folder: Optional[str] = field(
|
116 |
+
default=None,
|
117 |
+
metadata={
|
118 |
+
"help": "Offload folder "
|
119 |
+
"value if set."
|
120 |
+
},
|
121 |
+
)
|
122 |
+
max_eval_samples: Optional[int] = field(
|
123 |
+
default=None,
|
124 |
+
metadata={
|
125 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
126 |
+
"value if set."
|
127 |
+
},
|
128 |
+
)
|
129 |
+
source_max_len: int = field(
|
130 |
+
default=1024,
|
131 |
+
metadata={"help": "Maximum source sequence length. Sequences will be right padded (and possibly truncated)."},
|
132 |
+
)
|
133 |
+
target_max_len: int = field(
|
134 |
+
default=1024,
|
135 |
+
metadata={"help": "Maximum target sequence length. Sequences will be right padded (and possibly truncated)."},
|
136 |
+
)
|
137 |
+
dataset: str = field(
|
138 |
+
default='alpaca',
|
139 |
+
metadata={"help": "Which dataset to finetune on. See datamodule for options."}
|
140 |
+
)
|
141 |
+
|
142 |
+
@dataclass
|
143 |
+
class TrainingArguments(transformers.Seq2SeqTrainingArguments):
|
144 |
+
cache_dir: Optional[str] = field(
|
145 |
+
default=None
|
146 |
+
)
|
147 |
+
train_on_source: Optional[bool] = field(
|
148 |
+
default=False,
|
149 |
+
metadata={"help": "Whether to train on the input in addition to the target text."}
|
150 |
+
)
|
151 |
+
mmlu_split: Optional[str] = field(
|
152 |
+
default='eval',
|
153 |
+
metadata={"help": "The MMLU split to run on"}
|
154 |
+
)
|
155 |
+
mmlu_dataset: Optional[str] = field(
|
156 |
+
default='mmlu-fs',
|
157 |
+
metadata={"help": "MMLU dataset to use: options are `mmlu-zs` for zero-shot or `mmlu-fs` for few shot."}
|
158 |
+
)
|
159 |
+
do_mmlu_eval: Optional[bool] = field(
|
160 |
+
default=False,
|
161 |
+
metadata={"help": "Whether to run the MMLU evaluation."}
|
162 |
+
)
|
163 |
+
max_mmlu_samples: Optional[int] = field(
|
164 |
+
default=None,
|
165 |
+
metadata={"help": "If set, only evaluates on `max_mmlu_samples` of the MMMLU dataset."}
|
166 |
+
)
|
167 |
+
mmlu_source_max_len: int = field(
|
168 |
+
default=2048,
|
169 |
+
metadata={"help": "Maximum source sequence length for mmlu."}
|
170 |
+
)
|
171 |
+
full_finetune: bool = field(
|
172 |
+
default=False,
|
173 |
+
metadata={"help": "Finetune the entire model without adapters."}
|
174 |
+
)
|
175 |
+
adam8bit: bool = field(
|
176 |
+
default=False,
|
177 |
+
metadata={"help": "Use 8-bit adam."}
|
178 |
+
)
|
179 |
+
lora_r: int = field(
|
180 |
+
default=64,
|
181 |
+
metadata={"help": "Lora R dimension."}
|
182 |
+
)
|
183 |
+
lora_alpha: float = field(
|
184 |
+
default=16,
|
185 |
+
metadata={"help": " Lora alpha."}
|
186 |
+
)
|
187 |
+
lora_dropout: float = field(
|
188 |
+
default=0.0,
|
189 |
+
metadata={"help":"Lora dropout."}
|
190 |
+
)
|
191 |
+
max_memory_MB: int = field(
|
192 |
+
default=24000,
|
193 |
+
metadata={"help": "Free memory per gpu."}
|
194 |
+
)
|
195 |
+
report_to: str = field(
|
196 |
+
default='none',
|
197 |
+
metadata={"help": "To use wandb or something else for reporting."}
|
198 |
+
)
|
199 |
+
output_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'})
|
200 |
+
optim: str = field(default='paged_adamw_32bit', metadata={"help": 'The optimizer to be used'})
|
201 |
+
per_device_train_batch_size: int = field(default=1, metadata={"help": 'The training batch size per GPU. Increase for better speed.'})
|
202 |
+
gradient_accumulation_steps: int = field(default=16, metadata={"help": 'How many gradients to accumulate before to perform an optimizer step'})
|
203 |
+
max_steps: int = field(default=0, metadata={"help": 'How many optimizer update steps to take'})
|
204 |
+
weight_decay: float = field(default=0.0, metadata={"help": 'The L2 weight decay rate of AdamW'}) # use lora dropout instead for regularization if needed
|
205 |
+
learning_rate: float = field(default=0.0002, metadata={"help": 'The learnign rate'})
|
206 |
+
remove_unused_columns: bool = field(default=False, metadata={"help": 'Removed unused columns. Needed to make this codebase work.'})
|
207 |
+
max_grad_norm: float = field(default=0.3, metadata={"help": 'Gradient clipping max norm. This is tuned and works well for all models tested.'})
|
208 |
+
gradient_checkpointing: bool = field(default=True, metadata={"help": 'Use gradient checkpointing. You want to use this.'})
|
209 |
+
do_train: bool = field(default=True, metadata={"help": 'To train or not to train, that is the question?'})
|
210 |
+
lr_scheduler_type: str = field(default='constant', metadata={"help": 'Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis'})
|
211 |
+
warmup_ratio: float = field(default=0.03, metadata={"help": 'Fraction of steps to do a warmup for'})
|
212 |
+
logging_steps: int = field(default=10, metadata={"help": 'The frequency of update steps after which to log the loss'})
|
213 |
+
group_by_length: bool = field(default=True, metadata={"help": 'Group sequences into batches with same length. Saves memory and speeds up training considerably.'})
|
214 |
+
save_strategy: str = field(default='steps', metadata={"help": 'When to save checkpoints'})
|
215 |
+
save_steps: int = field(default=250, metadata={"help": 'How often to save a model'})
|
216 |
+
save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'})
|
217 |
+
|
218 |
+
def find_all_linear_names(args, model):
|
219 |
+
cls = GeneralQuantLinear if not(args.full_finetune) else torch.nn.Linear
|
220 |
+
lora_module_names = set()
|
221 |
+
for name, module in model.named_modules():
|
222 |
+
if isinstance(module, cls):
|
223 |
+
names = name.split('.')
|
224 |
+
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
225 |
+
|
226 |
+
|
227 |
+
if 'lm_head' in lora_module_names: # needed for 16-bit
|
228 |
+
lora_module_names.remove('lm_head')
|
229 |
+
return list(lora_module_names)
|
230 |
+
|
231 |
+
|
232 |
+
class SavePeftModelCallback(transformers.TrainerCallback):
|
233 |
+
def save_model(self, args, state, kwargs):
|
234 |
+
print('Saving PEFT checkpoint...')
|
235 |
+
if state.best_model_checkpoint is not None:
|
236 |
+
checkpoint_folder = os.path.join(state.best_model_checkpoint, "adapter_model")
|
237 |
+
else:
|
238 |
+
checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
|
239 |
+
|
240 |
+
peft_model_path = os.path.join(checkpoint_folder, "adapter_model")
|
241 |
+
kwargs["model"].save_pretrained(peft_model_path)
|
242 |
+
|
243 |
+
pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin")
|
244 |
+
if os.path.exists(pytorch_model_path):
|
245 |
+
os.remove(pytorch_model_path)
|
246 |
+
|
247 |
+
def on_save(self, args, state, control, **kwargs):
|
248 |
+
self.save_model(args, state, kwargs)
|
249 |
+
return control
|
250 |
+
|
251 |
+
def on_train_end(self, args, state, control, **kwargs):
|
252 |
+
def touch(fname, times=None):
|
253 |
+
with open(fname, 'a'):
|
254 |
+
os.utime(fname, times)
|
255 |
+
|
256 |
+
touch(join(args.output_dir, 'completed'))
|
257 |
+
self.save_model(args, state, kwargs)
|
258 |
+
|
259 |
+
def get_accelerate_model(args, checkpoint_dir):
|
260 |
+
|
261 |
+
n_gpus = torch.cuda.device_count()
|
262 |
+
max_memory = f'{args.max_memory_MB}MB'
|
263 |
+
max_memory = {i: max_memory for i in range(n_gpus)}
|
264 |
+
|
265 |
+
if args.full_finetune: assert args.bits in [16, 32]
|
266 |
+
|
267 |
+
print(f'loading base model {args.model_path}...')
|
268 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
269 |
+
args.model_path,
|
270 |
+
low_cpu_mem_usage=True,
|
271 |
+
device_map='auto',
|
272 |
+
max_memory=max_memory,
|
273 |
+
trust_remote_code=args.trust_remote_code,
|
274 |
+
inject_fused_attention = True,
|
275 |
+
inject_fused_mlp = False,
|
276 |
+
use_triton=False,
|
277 |
+
warmup_triton=False,
|
278 |
+
offload_folder='offload',
|
279 |
+
trainable=True
|
280 |
+
)
|
281 |
+
model.model.quantize_config = model.quantize_config
|
282 |
+
model.train()
|
283 |
+
|
284 |
+
setattr(model, 'model_parallel', True)
|
285 |
+
setattr(model, 'is_parallelizable', True)
|
286 |
+
modules = find_all_linear_names(args, model)
|
287 |
+
|
288 |
+
print("Modules: ", modules)
|
289 |
+
|
290 |
+
model.config.torch_dtype=torch.float16 #if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32))
|
291 |
+
|
292 |
+
if not args.full_finetune:
|
293 |
+
model = prepare_model_for_int8_training(model, use_gradient_checkpointing=args.gradient_checkpointing)
|
294 |
+
if args.gradient_checkpointing:
|
295 |
+
model.gradient_checkpointing_enable()
|
296 |
+
|
297 |
+
config = GPTQLoraConfig(
|
298 |
+
r=args.lora_r,
|
299 |
+
lora_alpha=args.lora_alpha,
|
300 |
+
target_modules=modules,
|
301 |
+
lora_dropout=args.lora_dropout,
|
302 |
+
bias="none",
|
303 |
+
task_type="CAUSAL_LM",
|
304 |
+
)
|
305 |
+
if not args.full_finetune:
|
306 |
+
if checkpoint_dir is not None:
|
307 |
+
print("Loading adapters from checkpoint.")
|
308 |
+
model = PeftModel.from_pretrained(model, join(checkpoint_dir, 'adapter_model'))
|
309 |
+
for name, p in model.named_parameters():
|
310 |
+
if 'lora' in name:
|
311 |
+
print(name, p.sum())
|
312 |
+
else:
|
313 |
+
print(f'adding LoRA modules...')
|
314 |
+
model = get_gptq_peft_model(model, config, auto_find_all_linears=True, train_mode=True)
|
315 |
+
|
316 |
+
if args.gradient_checkpointing:
|
317 |
+
if hasattr(model, "enable_input_require_grads"):
|
318 |
+
model.enable_input_require_grads()
|
319 |
+
else:
|
320 |
+
def make_inputs_require_grad(module, input, output):
|
321 |
+
output.requires_grad_(True)
|
322 |
+
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
323 |
+
|
324 |
+
|
325 |
+
for name, module in model.named_modules():
|
326 |
+
if isinstance(module, LoraLayer):
|
327 |
+
if args.bf16:
|
328 |
+
module = module.to(torch.bfloat16)
|
329 |
+
if 'norm' in name:
|
330 |
+
module = module.to(torch.float32)
|
331 |
+
if 'lm_head' in name or 'embed_tokens' in name:
|
332 |
+
if hasattr(module, 'weight'):
|
333 |
+
if args.bf16 and module.weight.dtype == torch.float32:
|
334 |
+
module = module.to(torch.bfloat16)
|
335 |
+
return model
|
336 |
+
|
337 |
+
def print_trainable_parameters(args, model):
|
338 |
+
"""
|
339 |
+
Prints the number of trainable parameters in the model.
|
340 |
+
"""
|
341 |
+
trainable_params = 0
|
342 |
+
all_param = 0
|
343 |
+
for _, param in model.named_parameters():
|
344 |
+
all_param += param.numel()
|
345 |
+
if param.requires_grad:
|
346 |
+
trainable_params += param.numel()
|
347 |
+
try:
|
348 |
+
trainable_params /= (32//model.quantize_config.bits)
|
349 |
+
except:
|
350 |
+
pass
|
351 |
+
print(f"trainable params: {trainable_params} || all params: {all_param} || trainable: {100 * trainable_params / all_param}")
|
352 |
+
|
353 |
+
def smart_tokenizer_and_embedding_resize(
|
354 |
+
special_tokens_dict: Dict,
|
355 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
356 |
+
model: transformers.PreTrainedModel,
|
357 |
+
):
|
358 |
+
"""Resize tokenizer and embedding.
|
359 |
+
|
360 |
+
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
361 |
+
"""
|
362 |
+
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
363 |
+
model.resize_token_embeddings(len(tokenizer))
|
364 |
+
|
365 |
+
if num_new_tokens > 0:
|
366 |
+
input_embeddings = model.get_input_embeddings().weight.data
|
367 |
+
output_embeddings = model.get_output_embeddings().weight.data
|
368 |
+
|
369 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
370 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
371 |
+
|
372 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
373 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
374 |
+
|
375 |
+
@dataclass
|
376 |
+
class DataCollatorForCausalLM(object):
|
377 |
+
tokenizer: transformers.PreTrainedTokenizer
|
378 |
+
source_max_len: int
|
379 |
+
target_max_len: int
|
380 |
+
train_on_source: bool
|
381 |
+
predict_with_generate: bool
|
382 |
+
|
383 |
+
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
384 |
+
# Extract elements
|
385 |
+
sources = [example['input'] for example in instances]
|
386 |
+
targets = [f"{example['output']}{self.tokenizer.eos_token}" for example in instances]
|
387 |
+
# Tokenize
|
388 |
+
tokenized_sources_with_prompt = self.tokenizer(
|
389 |
+
sources,
|
390 |
+
max_length=self.source_max_len,
|
391 |
+
truncation=True,
|
392 |
+
)
|
393 |
+
tokenized_targets = self.tokenizer(
|
394 |
+
targets,
|
395 |
+
max_length=self.target_max_len,
|
396 |
+
truncation=True,
|
397 |
+
add_special_tokens=False,
|
398 |
+
)
|
399 |
+
# Build the input and labels for causal LM
|
400 |
+
input_ids = []
|
401 |
+
labels = []
|
402 |
+
for tokenized_source, tokenized_target in zip(
|
403 |
+
tokenized_sources_with_prompt['input_ids'],
|
404 |
+
tokenized_targets['input_ids']
|
405 |
+
):
|
406 |
+
if not self.predict_with_generate:
|
407 |
+
input_ids.append(torch.tensor(tokenized_source + tokenized_target))
|
408 |
+
if not self.train_on_source:
|
409 |
+
labels.append(
|
410 |
+
torch.tensor([IGNORE_INDEX for _ in range(len(tokenized_source))] + copy.deepcopy(tokenized_target))
|
411 |
+
)
|
412 |
+
else:
|
413 |
+
labels.append(torch.tensor(copy.deepcopy(tokenized_source + tokenized_target)))
|
414 |
+
else:
|
415 |
+
input_ids.append(torch.tensor(tokenized_source))
|
416 |
+
# Apply padding
|
417 |
+
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
|
418 |
+
labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) if not self.predict_with_generate else None
|
419 |
+
data_dict = {
|
420 |
+
'input_ids': input_ids,
|
421 |
+
'attention_mask':input_ids.ne(self.tokenizer.pad_token_id),
|
422 |
+
}
|
423 |
+
if labels is not None:
|
424 |
+
data_dict['labels'] = labels
|
425 |
+
return data_dict
|
426 |
+
|
427 |
+
def extract_unnatural_instructions_data(examples, extract_reformulations=False):
|
428 |
+
out = {
|
429 |
+
'input': [],
|
430 |
+
'output': [],
|
431 |
+
}
|
432 |
+
for example_instances in examples['instances']:
|
433 |
+
for instance in example_instances:
|
434 |
+
out['input'].append(instance['instruction_with_input'])
|
435 |
+
out['output'].append(instance['output'])
|
436 |
+
if extract_reformulations:
|
437 |
+
for example_reformulations in examples['reformulations']:
|
438 |
+
if example_reformulations is not None:
|
439 |
+
for instance in example_reformulations:
|
440 |
+
out['input'].append(instance['instruction_with_input'])
|
441 |
+
out['output'].append(instance['output'])
|
442 |
+
return out
|
443 |
+
|
444 |
+
def make_data_module(tokenizer: transformers.PreTrainedTokenizer, args) -> Dict:
|
445 |
+
# Load dataset.
|
446 |
+
print(args.dataset)
|
447 |
+
|
448 |
+
if args.dataset == 'txt':
|
449 |
+
from transformers import TextDataset
|
450 |
+
with open("txt.txt","r",encoding="utf-8") as f:
|
451 |
+
data = f.readlines()
|
452 |
+
|
453 |
+
tmp = ''
|
454 |
+
gdata = []
|
455 |
+
current_length = 0
|
456 |
+
print("Creating groups...")
|
457 |
+
for s in data:
|
458 |
+
if current_length + len(s) <= 512:
|
459 |
+
tmp = tmp + s + "\n"
|
460 |
+
current_length += len(s)
|
461 |
+
else:
|
462 |
+
gdata.append(tmp)
|
463 |
+
tmp = s
|
464 |
+
current_length = len(s)
|
465 |
+
|
466 |
+
l = list(map(lambda x: {
|
467 |
+
'input': '',
|
468 |
+
'output': x
|
469 |
+
}, gdata))
|
470 |
+
from datasets import Dataset
|
471 |
+
dataset=Dataset.from_list(l)
|
472 |
+
|
473 |
+
elif args.dataset == 'dataset':
|
474 |
+
dataset = load_dataset("json", data_files='dataset.json')
|
475 |
+
|
476 |
+
if args.do_train:
|
477 |
+
if args.dataset == 'txt':
|
478 |
+
train_dataset = dataset
|
479 |
+
else:
|
480 |
+
train_dataset = dataset['train']
|
481 |
+
if args.max_train_samples is not None and len(train_dataset) > args.max_train_samples:
|
482 |
+
train_dataset = train_dataset.select(range(args.max_train_samples))
|
483 |
+
if args.group_by_length:
|
484 |
+
train_dataset = train_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
|
485 |
+
|
486 |
+
data_collator = DataCollatorForCausalLM(
|
487 |
+
tokenizer=tokenizer,
|
488 |
+
source_max_len=args.source_max_len,
|
489 |
+
target_max_len=args.target_max_len,
|
490 |
+
train_on_source=args.train_on_source,
|
491 |
+
predict_with_generate=args.predict_with_generate,
|
492 |
+
)
|
493 |
+
return dict(
|
494 |
+
train_dataset=train_dataset if args.do_train else None,
|
495 |
+
eval_dataset=eval_dataset if args.do_eval else None,
|
496 |
+
predict_dataset=eval_dataset if args.do_predict else None,
|
497 |
+
data_collator=data_collator
|
498 |
+
)
|
499 |
+
|
500 |
+
def get_last_checkpoint(checkpoint_dir):
|
501 |
+
if isdir(checkpoint_dir):
|
502 |
+
is_completed = exists(join(checkpoint_dir, 'completed'))
|
503 |
+
if is_completed: return None, True # already finished
|
504 |
+
max_step = 0
|
505 |
+
for filename in os.listdir(checkpoint_dir):
|
506 |
+
if isdir(join(checkpoint_dir, filename)) and filename.startswith('checkpoint'):
|
507 |
+
max_step = max(max_step, int(filename.replace('checkpoint-', '')))
|
508 |
+
print("MX: ", max_step, " - ", filename)
|
509 |
+
if max_step == 0: return None, is_completed # training started, but no checkpoint
|
510 |
+
checkpoint_dir = join(checkpoint_dir, f'checkpoint-{max_step}')
|
511 |
+
print(f"Found a previous checkpoint at: {checkpoint_dir}")
|
512 |
+
return checkpoint_dir, is_completed # checkpoint found!
|
513 |
+
return None, False # first training
|
514 |
+
|
515 |
+
def train():
|
516 |
+
hfparser = transformers.HfArgumentParser((
|
517 |
+
ModelArguments, DataArguments, TrainingArguments
|
518 |
+
))
|
519 |
+
model_args, data_args, training_args, extra_args = \
|
520 |
+
hfparser.parse_args_into_dataclasses(return_remaining_strings=True)
|
521 |
+
# training_args.generation_config = transformers.GenerationConfig(**vars(generation_args))
|
522 |
+
args = argparse.Namespace(
|
523 |
+
**vars(model_args), **vars(data_args), **vars(training_args)
|
524 |
+
)
|
525 |
+
|
526 |
+
checkpoint_dir, completed_training = get_last_checkpoint(args.output_dir)
|
527 |
+
|
528 |
+
if completed_training:
|
529 |
+
print('Detected that training was already completed!')
|
530 |
+
|
531 |
+
model = get_accelerate_model(args, checkpoint_dir)
|
532 |
+
training_args.skip_loading_checkpoint_weights=True
|
533 |
+
|
534 |
+
load_existing_lora = os.path.exists('src_lora/adapter_model.safetensors')
|
535 |
+
|
536 |
+
if load_existing_lora:
|
537 |
+
print(f"Loading existing LoRA")
|
538 |
+
adapters_weights = load_file('src_lora/adapter_model.safetensors')
|
539 |
+
set_peft_model_state_dict(model, adapters_weights)
|
540 |
+
|
541 |
+
model.config.use_cache = False
|
542 |
+
print_trainable_parameters(args, model)
|
543 |
+
print('loaded model')
|
544 |
+
set_seed(args.seed)
|
545 |
+
|
546 |
+
# Tokenizer
|
547 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
548 |
+
args.model_path,
|
549 |
+
cache_dir=args.cache_dir,
|
550 |
+
padding_side="right",
|
551 |
+
use_fast=True,
|
552 |
+
)
|
553 |
+
|
554 |
+
if tokenizer.pad_token is None:
|
555 |
+
smart_tokenizer_and_embedding_resize(
|
556 |
+
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
|
557 |
+
tokenizer=tokenizer,
|
558 |
+
model=model,
|
559 |
+
)
|
560 |
+
|
561 |
+
if isinstance(tokenizer, LlamaTokenizerFast):
|
562 |
+
# LLaMA tokenizer may not have correct special tokens set.
|
563 |
+
# Check and add them if missing to prevent them from being parsed into different tokens.
|
564 |
+
# Note that these are present in the vocabulary.
|
565 |
+
# Note also that `model.config.pad_token_id` is 0 which corresponds to `<unk>` token.
|
566 |
+
tokenizer.add_special_tokens(
|
567 |
+
{
|
568 |
+
"eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id),
|
569 |
+
"bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id),
|
570 |
+
"unk_token": tokenizer.convert_ids_to_tokens(model.config.pad_token_id),
|
571 |
+
}
|
572 |
+
)
|
573 |
+
|
574 |
+
data_module = make_data_module(tokenizer=tokenizer, args=args)
|
575 |
+
trainer = Seq2SeqTrainer(
|
576 |
+
# trainer = SFTTrainer(
|
577 |
+
model=model,
|
578 |
+
tokenizer=tokenizer,
|
579 |
+
args=training_args,
|
580 |
+
**{k:v for k,v in data_module.items() if k != 'predict_dataset'},
|
581 |
+
)
|
582 |
+
|
583 |
+
# Callbacks
|
584 |
+
if not args.full_finetune:
|
585 |
+
trainer.add_callback(SavePeftModelCallback)
|
586 |
+
|
587 |
+
# Verifying the datatypes.
|
588 |
+
dtypes = {}
|
589 |
+
for _, p in model.named_parameters():
|
590 |
+
dtype = p.dtype
|
591 |
+
if dtype not in dtypes: dtypes[dtype] = 0
|
592 |
+
dtypes[dtype] += p.numel()
|
593 |
+
total = 0
|
594 |
+
for k, v in dtypes.items(): total+= v
|
595 |
+
for k, v in dtypes.items():
|
596 |
+
print(k, v, v/total)
|
597 |
+
|
598 |
+
all_metrics = {"run_name": args.run_name}
|
599 |
+
# Training
|
600 |
+
if args.do_train:
|
601 |
+
train_result = trainer.train(resume_from_checkpoint=False)
|
602 |
+
metrics = train_result.metrics
|
603 |
+
trainer.log_metrics("train", metrics)
|
604 |
+
trainer.save_metrics("train", metrics)
|
605 |
+
trainer.save_state()
|
606 |
+
all_metrics.update(metrics)
|
607 |
+
|
608 |
+
if (args.do_train):
|
609 |
+
with open(os.path.join(args.output_dir, "metrics.json"), "w") as fout:
|
610 |
+
fout.write(json.dumps(all_metrics))
|
611 |
+
|
612 |
+
if __name__ == "__main__":
|
613 |
+
train()
|