{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f21411a4c80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690139264674674099, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACUYDynWrE/FjgwP1twE7/Wtme8ZcP8vQAAAAAAAAAAZu2XvRy/pD4S4nI8iW2fvrFQxry+nV09AAAAAAAAAACa5JM9w41NuopxUbxJola1tosLu0gdwjQAAIA/AACAP9osuL1cGFS8mugKPdJ2oLwNjoe9dgREvgAAAAAAAIA/5uq4vVSbND6nSoe97YYrviLCzrymFsQ8AAAAAAAAAACaI0O9KbBCuqq9TzoaxTg1gk2Wuvq8dbkAAIA/AACAP5o7x7x7AIW6hXpFPCCouLbJTDE7P3ixtQAAgD8AAIA/jYaAPfaMWLpgO4w5emkANI/0Vrvw0KK4AACAPwAAgD+zPMy9j+Yguq6lRLxqaxG9l6WSO4jv/j0AAIA/AAAAAGbMdbz2GHi6avkMOczqBjQKfTc7/sskuAAAgD8AAIA/TTwbPRfeoT8C2IM+dhnhvu1Od7rKsrk9AAAAAAAAAABmbha+A6cwvLYPcLvxbYW5i1KgPZabozoAAIA/AACAP4CVgL32KCC60hzcOxA9DDdnRX67C9oLNgAAgD8AAIA/2sDNveGekbrIoui689gPtWzuI7s+dgU6AACAPwAAgD8Am8W+n7cuPyrJEz4Kgc++4pqhvTUyoT0AAAAAAAAAALP+Xr328Da6Jxofu+nwWjYc7RW7yIM5OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAHQWN3np2MAWyUTbUCjAF0lEdAoUBDH+6y0XV9lChoBkdAYxaxh2GIsWgHTegDaAhHQKFCWih37k51fZQoaAZHQGE/v5pJwsJoB03oA2gIR0ChRKTaCcwydX2UKGgGR0Be86V2Rq46aAdN6ANoCEdAoUTSemNzbXV9lChoBkdAZax16E8JU2gHTegDaAhHQKFI4zTnaFp1fZQoaAZHQGQojDbah6BoB03oA2gIR0ChViFsP8Q7dX2UKGgGR0Bj5jin5zo2aAdN6ANoCEdAoVcgFPi1iXV9lChoBkdAZST0lqrR0GgHTegDaAhHQKFXqrkKeCl1fZQoaAZHQD52ZrpJPIpoB00XAWgIR0ChWQV+I/JOdX2UKGgGR0BmOsnPVurIaAdN6ANoCEdAoVlDFhoduHV9lChoBkdAYpop6yB062gHTegDaAhHQKFZUvduYQd1fZQoaAZHQGLlTnq3VkNoB03oA2gIR0ChWan1e0HAdX2UKGgGR0BkNDvTgEU1aAdN6ANoCEdAoVpA5imVJXV9lChoBkdAZOKb1AZ88mgHTegDaAhHQKFa46RQrMF1fZQoaAZHQEmPZSNwR5FoB0vHaAhHQKFdTshPj4p1fZQoaAZHQECmk0Jng51oB0vZaAhHQKFfPVRUFSt1fZQoaAZHQA/M3Q2MsH1oB0vUaAhHQKFhoX40uUV1fZQoaAZHQGFRQ9A5aNdoB03oA2gIR0ChZ0MZHd43dX2UKGgGR0BhTUPDpC8faAdN6ANoCEdAoWnzQAuIynV9lChoBkdAZSQR8MNMG2gHTegDaAhHQKFtzAdGRV91fZQoaAZHQGVUZcTrVvxoB03oA2gIR0ChblVEmY0EdX2UKGgGR0BbdfMbFS88aAdN6ANoCEdAoW/3U2DQJHV9lChoBkdAZC8zsyBTXWgHTegDaAhHQKFyXPl+3H91fZQoaAZHQGFFKoybhFVoB03oA2gIR0ChdYjmr8zidX2UKGgGR0BlnOseXAuaaAdN6ANoCEdAoXktf5ULlXV9lChoBkdAYhnpvgm7a2gHTegDaAhHQKGEr6HCXQd1fZQoaAZHQF6gqFRHf/FoB03oA2gIR0Chhq5kCmuUdX2UKGgGR0BjHnDYRNAUaAdN6ANoCEdAoYb8J+lTFXV9lChoBkdAY2I8h9srNGgHTegDaAhHQKGHYXt0FKV1fZQoaAZHQGPdUUO/cnFoB03oA2gIR0ChiBvK+zt1dX2UKGgGR0A6+p++dsi0aAdLyWgIR0Chi0N3wCr+dX2UKGgGR0BFBXS0BwMqaAdL8mgIR0Chi7Ip6QeWdX2UKGgGR0BjrYpQUHpsaAdN6ANoCEdAoYu6+i8Fp3V9lChoBkdAY/O/Ho5ggGgHTegDaAhHQKGNtJK8L8d1fZQoaAZHQGOt31zySV5oB03oA2gIR0Chj4JIDoyLdX2UKGgGR0BkhZxiobXIaAdN6ANoCEdAoZQRvxYq5XV9lChoBkdAYJklUp/gBWgHTegDaAhHQKGX9W+49X91fZQoaAZHQGTHT7uUliVoB03oA2gIR0ChnC29tdiVdX2UKGgGR0BkKoJ/oaDPaAdN6ANoCEdAoZy3rD63zHV9lChoBkdAZCiZlWfbsWgHTegDaAhHQKGeSEFnqV11fZQoaAZHQGPPbiIcinpoB03oA2gIR0ChoKip3os7dX2UKGgGR0Bj55uZTho/aAdN6ANoCEdAoaOdn5BToHV9lChoBkdAP3ZCOWBz3mgHTRMBaAhHQKGlPOrQw9J1fZQoaAZHQGL2etCAtnRoB03oA2gIR0ChtcumR/3GdX2UKGgGR0BiHBnUUfxMaAdN6ANoCEdAobYaNZNfxHV9lChoBkdAYdmHnlnyu2gHTegDaAhHQKG2fUWl/H51fZQoaAZHQGDEVqWTouBoB03oA2gIR0ChtzAOJ+DwdX2UKGgGR0BijJHqeK8+aAdN6ANoCEdAoboDbDdgv3V9lChoBkdAYYkslsxfwGgHTegDaAhHQKG6WdUbT+h1fZQoaAZHQGXPkv9LpRpoB03oA2gIR0ChumIK2KEWdX2UKGgGR0BeQbsv7FbWaAdN6ANoCEdAobwVpudf9nV9lChoBkdAQkI0ALiMpGgHS+hoCEdAob2PCqIacnV9lChoBkdAYRJAbhm5D2gHTegDaAhHQKG9qz8gpz91fZQoaAZHQGJrZbILgGdoB03oA2gIR0ChwViRnvlVdX2UKGgGR0BkWXI8yN4raAdN6ANoCEdAocPgOe8PF3V9lChoBkdAYVE3H7xd6mgHTegDaAhHQKHI7/Khcqx1fZQoaAZHQGeIh7u2JBRoB03oA2gIR0Chy2L9VFQVdX2UKGgGR0BkbmpEQXhwaAdN6ANoCEdAoc4Pk92X9nV9lChoBkdAY4pdnCfpU2gHTegDaAhHQKHRFKW9lEt1fZQoaAZHQGJngFPi1iRoB03oA2gIR0Ch0sVKGtZFdX2UKGgGR0A6cRlHz6JqaAdLxmgIR0Ch1IRDst03dX2UKGgGR0BjS4lMRHwxaAdN6ANoCEdAoeAgiA2AG3V9lChoBkdAY+7I/Z/Tb2gHTegDaAhHQKHgjGhEjPh1fZQoaAZHQGHWVct5D7ZoB03oA2gIR0Ch4RXyRSxadX2UKGgGR0BiypnzxwyZaAdN6ANoCEdAoeapLuhK2HV9lChoBkdAZjse/5+H8GgHTegDaAhHQKHnHIDHOr11fZQoaAZHQGZf6sZHd45oB03oA2gIR0Ch5yZlnRLLdX2UKGgGR0BG6tHYpUgkaAdL22gIR0Ch6Q2VeKKpdX2UKGgGR0Bil5SYPXkHaAdN6ANoCEdAoek2YnfEXXV9lChoBkdAZEgYoiLVF2gHTegDaAhHQKHq3BDXvph1fZQoaAZHQGKN7OeJ53VoB03oA2gIR0Ch6vpwKjSHdX2UKGgGR0Blaovg3tKJaAdN6ANoCEdAoe8nzDn/1nV9lChoBkdAY0ra0x/NJWgHTegDaAhHQKHxxMOf/WF1fZQoaAZHQF/TlQ/HHWBoB03oA2gIR0Ch9kYXfqHHdX2UKGgGR0BcsB/ustCiaAdN6ANoCEdAofgFrO7g9HV9lChoBkdAZhVTUiILxGgHTegDaAhHQKH/r9R77bd1fZQoaAZHQF42bblA/s5oB03oA2gIR0CiAbT6rNnodX2UKGgGR0BlZzpJPIn0aAdN6ANoCEdAogOfKp1ifHV9lChoBkdAZbTPykKu0WgHTegDaAhHQKIPn5B1Lap1fZQoaAZHQFquEvCdjG1oB03oA2gIR0CiEA59NN8FdX2UKGgGR0BdpPrnkkrxaAdN6ANoCEdAohQF9MK1HHV9lChoBkdAZWvyHVPN3WgHTegDaAhHQKIUokM1CPZ1fZQoaAZHQGKq+RPoFFFoB03oA2gIR0CiFK3KB/ZvdX2UKGgGR0BijaC6H0sfaAdN6ANoCEdAohchJf6XSnV9lChoBkdAaHISkCV8kWgHTegDaAhHQKIXVERaouR1fZQoaAZHQF+d64UeuFJoB03oA2gIR0CiGU8LBsQ/dX2UKGgGR0BhCilLvkR0aAdN6ANoCEdAohl3FcY64nV9lChoBkdAHRlGwzLwF2gHS+JoCEdAohwTJ+2E03V9lChoBkdAY946f8MuvmgHTegDaAhHQKIdO9q1w5x1fZQoaAZHQGEprBj4HopoB03oA2gIR0CiH0NbTtsvdX2UKGgGR0BK+mUGFBY3aAdL0WgIR0CiH1L9deIEdX2UKGgGR0BImVuaWom5aAdLwGgIR0CiIuPV/c33dX2UKGgGR0BioGCGvfTDaAdN6ANoCEdAoiML6i0v5HV9lChoBkdAXjXHq/ub7WgHTegDaAhHQKIkhfO2RaJ1fZQoaAZHQD66PyTY/V1oB0u0aAhHQKIoezxgAp91fZQoaAZHQGTL37k4m1JoB03oA2gIR0CiKZQNCqp+dX2UKGgGR0BhoxsMy8BdaAdN6ANoCEdAoitO3OObRXV9lChoBkdAY4HfP5YYBWgHTegDaAhHQKItFHEuQIV1fZQoaAZHQGHklpoK2KFoB03oA2gIR0CiMJMAeaKDdX2UKGgGR0Bhy5l+Vkc0aAdN6ANoCEdAojEg9/z8QHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}