{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f21411a4c80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690144401921563286, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICHST1SWJs/fcFQPgNeK78RLxQ+WFoKvQAAAAAAAAAALdhRPgN4PT+KR7E9jb0Iv0NBfj6lvba9AAAAAAAAAADNTcY9S22FPXtkyL4C24i+whuivIYPer0AAAAAAAAAAJpu0LzDETm6rqYkt83spC8Jv5W7QiBANgAAgD8AAIA/M9dXvFxeuT+yZ4O+EnuOPpzcUDztulM8AAAAAAAAAACaU+a8WSu2Pz2A7b7Wgcg8NJq4PECcJT0AAAAAAAAAAIa/HD7FtXg/IuSMPnM0FL9+JHw+GCWIPQAAAAAAAAAArbNRPusPEj/L3oG7MaENv3OfVz4q7yC+AAAAAAAAAADaSo4+s/fwPhqOt74arwi/0X/1Pa6cTL4AAAAAAAAAAGpNgD4x1BI/lwUfvn+/D79fTxo+lonPvQAAAAAAAAAAM+lqvBTulLoi5VszQLovLKvR7zqorqqzAACAPwAAgD+AhZ29FMghP/O7aT1hmR+/kLjlvdf0vT0AAAAAAAAAAM3yBrwpSEq60vu1tHXJMi+SzKm7279eMwAAgD8AAIA/M/LrvMOOWLxWS8A9djNYPAszt73PAzM9AACAPwAAgD8ALIM7wz12uvrdhrp6sni1sKwiuy7UnTkAAIA/AACAP+YXNL2u2YW66raMOin/R7aKadS6tuKiuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJWMGHHmzWMAWyUS+yMAXSUR0DGeFvJiiItdX2UKGgGR0BwTuce8wpOaAdNIwFoCEdAxnhe1Vo6CHV9lChoBkdAcoK2FnIyTWgHTb4BaAhHQMZ4dQDvE0l1fZQoaAZHQHKSC5I6KcdoB0u+aAhHQMZ4jofbKzR1fZQoaAZHQHGsx64UeuFoB0vraAhHQMZ4qfXoTwl1fZQoaAZHQG7QJobn5i5oB0v5aAhHQMZ4s8hs67x1fZQoaAZHQHDLYcinpB5oB0v+aAhHQMZ4usiB5HF1fZQoaAZHQHAcYJRfnfVoB0vxaAhHQMZ435l4C6p1fZQoaAZHQHJzNV3ljmVoB0vTaAhHQMZ44o0IkZ91fZQoaAZHQHFflVktmL9oB0vuaAhHQMZ48qFIuoR1fZQoaAZHQHHubgflp49oB0vzaAhHQMZ5IHSv1UV1fZQoaAZHQHDFF0T101ZoB0vTaAhHQMZ5IrjPv8Z1fZQoaAZHQHIwp6QeV9poB00MAWgIR0DGeSkifQKKdX2UKGgGR0BxNtKVY6n0aAdL72gIR0DGeS8iSq2jdX2UKGgGR0By/49s7+1jaAdNPQFoCEdAxnk8B7u2JHV9lChoBkdAchST3qRlpWgHS/NoCEdAxnlHVGTcI3V9lChoBkdAciU4s3AEdWgHS/poCEdAxnlnMfzSTnV9lChoBkdAbqv2wmmcfGgHTTcBaAhHQMZ5eqASWZ91fZQoaAZHQHMMAtrbg0loB0vZaAhHQMZ5gNrbg0l1fZQoaAZHQHGS+JHiFTNoB02qAWgIR0DGeYrLIPsidX2UKGgGR0BxydVzZHuraAdL32gIR0DGeZYB7u2JdX2UKGgGR0BxswiX6ZYxaAdLwWgIR0DGeaG/vfCRdX2UKGgGR0Bxaljx0+1SaAdL0GgIR0DGeb6eAd4ndX2UKGgGR0BxKn7hvR7aaAdLxWgIR0DGed5rcj7idX2UKGgGR0ByPNyaNMoMaAdL0mgIR0DGee+jASFodX2UKGgGR0ByvUolUp/gaAdLvGgIR0DGefG5nUUgdX2UKGgGR0Bz5oWsRxtIaAdNdAFoCEdAxnn9wqiGnHV9lChoBkdAcHg9CNS62GgHS9doCEdAxnoCdtl7MXV9lChoBkdAcm29xIatLmgHTTYBaAhHQMZ6I4TsY2t1fZQoaAZHQHMqT1TR6WxoB0v7aAhHQMZ6Wzd1uBN1fZQoaAZHQHHfCDh99c9oB0vRaAhHQMZ6bciGFi91fZQoaAZHQHCdR2nsLORoB00xAWgIR0DGhNbMTviMdX2UKGgGR0ByKcEEC/47aAdLz2gIR0DGhNrYI0IkdX2UKGgGR0ByvtK+SKWLaAdNqgFoCEdAxoTcxhUip3V9lChoBkdAc9HY4Qz1smgHS9RoCEdAxoTrjtoi93V9lChoBkdAcNSWKdhAnmgHS7poCEdAxoT5Bk7OmnV9lChoBkdAcn8DD0lJH2gHTSQBaAhHQMaFA9/jKgZ1fZQoaAZHQHH4dkJ8fFJoB00YAWgIR0DGhQ9wNsnBdX2UKGgGR0BxQ114gRseaAdNDQFoCEdAxoUlCsOoYXV9lChoBkdAcQ9gogFHKGgHS7ZoCEdAxoUplK9PDnV9lChoBkdAcVcdPci4a2gHS9ZoCEdAxoUqgfU4JnV9lChoBkdAct5W69TP0WgHS89oCEdAxoVUjdpItnV9lChoBkdAcpS7NjbzsmgHTR0BaAhHQMaFfseGO+91fZQoaAZHQHEffxUedTZoB0uvaAhHQMaFivHLidd1fZQoaAZHQHKP15Sm65JoB0vKaAhHQMaFk/FzdUN1fZQoaAZHQHGigLeANG5oB003AWgIR0DGhZiWw/xEdX2UKGgGR0ByIAT+NtIkaAdLt2gIR0DGhbFSKm8/dX2UKGgGR0ByJv9MsYl6aAdNCAFoCEdAxoW1ZRKpUHV9lChoBkdAcshfPomoi2gHS/1oCEdAxoW3SkTHsHV9lChoBkdAcV7KsdT5wmgHS/FoCEdAxoW7l2/zrnV9lChoBkdAcTZP6be/H2gHS/5oCEdAxoXCnhKlHnV9lChoBkdAcoAnhsImgWgHS/poCEdAxoXf4QjD9HV9lChoBkdAdCn+qioKlmgHTYcBaAhHQMaF66+evp11fZQoaAZHQHHydBrvb49oB0vjaAhHQMaGAFBY3eh1fZQoaAZHQHLSjfNzKcNoB0vjaAhHQMaGAeVkc0d1fZQoaAZHQHGd0Cq6vq1oB00RAWgIR0DGhhL3Zf2LdX2UKGgGR0BwskIVuaWpaAdLw2gIR0DGhhNpM6BAdX2UKGgGR0Bv9fHtF8XvaAdLxWgIR0DGhksep4r0dX2UKGgGR0BwChmnO0LMaAdLx2gIR0DGhmbD0lJIdX2UKGgGR0ByNXMOf/WEaAdLu2gIR0DGhoaySmqHdX2UKGgGR0BycodCE6DHaAdL2mgIR0DGhoZ5iVjadX2UKGgGR0Bx1HxiG34LaAdNYAFoCEdAxoabR1oxpXV9lChoBkdAcL+ETg2qDWgHTQEBaAhHQMaGqR7AtWd1fZQoaAZHQHKjQdOqNqBoB0vkaAhHQMaGuda+vhZ1fZQoaAZHQHQtsiW3Sa5oB0vraAhHQMaGvdMsYl91fZQoaAZHQHExQpSaVlhoB0u6aAhHQMaHBeNDMNd1fZQoaAZHQHOzXT7VJ+VoB00ZAWgIR0DGhwgfhddFdX2UKGgGR0By/OQ4jrzHaAdL4mgIR0DGhx6O3lS1dX2UKGgGR0BwdDin5zo2aAdNCQFoCEdAxocid7v5QHV9lChoBkdAcN10CzTnaGgHTUwBaAhHQMaHQS1/lQx1fZQoaAZHQHLgU/fO2RdoB00XAWgIR0DGh1Kzw+dLdX2UKGgGR0Bxt0Szw+dLaAdLzWgIR0DGh1iCe2/jdX2UKGgGR0BzUUVN5+pgaAdL5GgIR0DGh1mZqmCRdX2UKGgGR0Bv5C5TZQHiaAdLuGgIR0DGh1qcbzbwdX2UKGgGR0BxiA/RmbsoaAdLtGgIR0DGh2U/lhgFdX2UKGgGR0Bxco1baAWjaAdLvGgIR0DGh3TmU4aQdX2UKGgGR0BwgTC+De0paAdLx2gIR0DGh4iAz544dX2UKGgGR0BwRJmvnr6daAdNAQFoCEdAxoeZMoMKC3V9lChoBkdAccPKpkwvg2gHTV4BaAhHQMaHnFnRLK51fZQoaAZHQHIR71dxAB1oB02cAWgIR0DGh7QRmK64dX2UKGgGR0BwaPTDwYtQaAdLpmgIR0DGh7hCjUNKdX2UKGgGR0BxO5eQdS2qaAdNEwFoCEdAxofL52yLRHV9lChoBkdAcxaIuGsV+WgHS8ZoCEdAxofOoIfKZHV9lChoBkdAc+8eGfwqiGgHS/ZoCEdAxofkE25xznV9lChoBkdAc968xbjcVWgHS/1oCEdAxofn3N9piHV9lChoBkdAcGeOWSlnAmgHS6FoCEdAxoftQXyiEnV9lChoBkdAbzf2ZAprlGgHS8VoCEdAxogA0pEx7HV9lChoBkdAcczrqt5lfGgHS9RoCEdAxogPZOi35XV9lChoBkdAbzNUb1h9cGgHS+doCEdAxogaNAkcCHV9lChoBkdAcX1CzTnaFmgHTTABaAhHQMaITTQeFL51fZQoaAZHQHA5LBGhEjRoB00gAWgIR0DGiFgjdHlPdX2UKGgGR0Bwi+bKA8SxaAdNFAFoCEdAxohqgdOqN3V9lChoBkdAcgWi5d4VymgHTQABaAhHQMaIbqfOD8N1fZQoaAZHQHKy8ZxaPjpoB00MAWgIR0DGiI4pKBd2dX2UKGgGR0ByZ2cmShalaAdL9GgIR0DGiJOIXTEzdX2UKGgGR0BzhFqynk1eaAdL0mgIR0DGiJK2hIvrdX2UKGgGR0B0Ko8GLUCraAdLzmgIR0DGiKUwDeTFdX2UKGgGR0ByGjI7vG6xaAdL1mgIR0DGiLEAHVwxdX2UKGgGR0ByGv+S8rZraAdL5WgIR0DGiMeIAOridX2UKGgGR0BxDFdcB2fTaAdL0GgIR0DGiMiakRBedWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3004, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 16, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}