File size: 15,667 Bytes
3167ecd
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7dc7e60069e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dc7e6002900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690632286413393997, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAklPOPodmqrzs+xY/klPOPodmqrzs+xY/klPOPodmqrzs+xY/klPOPodmqrzs+xY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+xuvP/syg7+cAGq//CWoP6Axqr7kkHE/iLEnv15JEj/u1o8/en+HP0uXl78SyGY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACSU84+h2aqvOz7Fj98tmA8BZ7+OfaudTySU84+h2aqvOz7Fj98tmA8BZ7+OfaudTySU84+h2aqvOz7Fj98tmA8BZ7+OfaudTySU84+h2aqvOz7Fj98tmA8BZ7+OfaudTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40298134 -0.02080084  0.5897815 ]\n [ 0.40298134 -0.02080084  0.5897815 ]\n [ 0.40298134 -0.02080084  0.5897815 ]\n [ 0.40298134 -0.02080084  0.5897815 ]]", "desired_goal": "[[ 1.3680414  -1.0249933  -0.9140718 ]\n [ 1.3136592  -0.33240986  0.9436171 ]\n [-0.65505266  0.571432    1.1237466 ]\n [ 1.0585778  -1.1843046   0.90149033]]", "observation": "[[ 4.0298134e-01 -2.0800842e-02  5.8978152e-01  1.3715383e-02\n   4.8564389e-04  1.4995327e-02]\n [ 4.0298134e-01 -2.0800842e-02  5.8978152e-01  1.3715383e-02\n   4.8564389e-04  1.4995327e-02]\n [ 4.0298134e-01 -2.0800842e-02  5.8978152e-01  1.3715383e-02\n   4.8564389e-04  1.4995327e-02]\n [ 4.0298134e-01 -2.0800842e-02  5.8978152e-01  1.3715383e-02\n   4.8564389e-04  1.4995327e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+bunvfHpJT1nmPU8fI/qvW2TkT20qEM+2QnkPZrkv721eu09mKL7PXFQ071zEws+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.0819015   0.04050631  0.0299799 ]\n [-0.11453149  0.07108197  0.19107324]\n [ 0.11134691 -0.09369774  0.1159567 ]\n [ 0.12286872 -0.10318077  0.13581638]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITgmISbjgE8CUhpRSlIwBbJRLMowBdJRHQKeweTQE6kt1fZQoaAZoCWgPQwi6vg8HCbESwJSGlFKUaBVLMmgWR0CnsDdPci4bdX2UKGgGaAloD0MIcOoDyTvHDcCUhpRSlGgVSzJoFkdAp6/4GbCrLnV9lChoBmgJaA9DCMlXAimx6w/AlIaUUpRoFUsyaBZHQKevuK7ZnL91fZQoaAZoCWgPQwjVJHhDGlUDwJSGlFKUaBVLMmgWR0CnsWZOJtSAdX2UKGgGaAloD0MIFD/G3LUEBMCUhpRSlGgVSzJoFkdAp7Ek5EMLGHV9lChoBmgJaA9DCHSbcK/MWwvAlIaUUpRoFUsyaBZHQKew5ayrxRV1fZQoaAZoCWgPQwjekbHa/B8PwJSGlFKUaBVLMmgWR0CnsKZLAYYSdX2UKGgGaAloD0MIsFjDRe4JFcCUhpRSlGgVSzJoFkdAp7JRl6JIlXV9lChoBmgJaA9DCAEydOygsgbAlIaUUpRoFUsyaBZHQKeyD8uSOip1fZQoaAZoCWgPQwjYvKqzWlAbwJSGlFKUaBVLMmgWR0CnsdB8IAwPdX2UKGgGaAloD0MIMpHSbB4HBMCUhpRSlGgVSzJoFkdAp7GQ8Md92HV9lChoBmgJaA9DCHAlOzYCkQbAlIaUUpRoFUsyaBZHQKezPh2GIsR1fZQoaAZoCWgPQwh1PjxLkMEQwJSGlFKUaBVLMmgWR0Cnsvw9zOopdX2UKGgGaAloD0MIYOXQItvJE8CUhpRSlGgVSzJoFkdAp7K9TkyULXV9lChoBmgJaA9DCEgzFk1nJwrAlIaUUpRoFUsyaBZHQKeyffbblBB1fZQoaAZoCWgPQwi/KaxUUPEDwJSGlFKUaBVLMmgWR0CntCZEDyOJdX2UKGgGaAloD0MI2nIuxVWFA8CUhpRSlGgVSzJoFkdAp7PkXLvCuXV9lChoBmgJaA9DCE+tvroq8A3AlIaUUpRoFUsyaBZHQKezpRNyo4x1fZQoaAZoCWgPQwguG53zU/wSwJSGlFKUaBVLMmgWR0Cns2WhysCDdX2UKGgGaAloD0MIPlxy3Ck9C8CUhpRSlGgVSzJoFkdAp7UW+Cbtq3V9lChoBmgJaA9DCGoV/aGZNxDAlIaUUpRoFUsyaBZHQKe01SWqtHR1fZQoaAZoCWgPQwgeG4F4XX8DwJSGlFKUaBVLMmgWR0CntJXpnpSrdX2UKGgGaAloD0MIvqHw2TrIEMCUhpRSlGgVSzJoFkdAp7RWpVCHAXV9lChoBmgJaA9DCOaRPxh4rgLAlIaUUpRoFUsyaBZHQKe19zf779B1fZQoaAZoCWgPQwiesS/ZeDAQwJSGlFKUaBVLMmgWR0CntbUlZ5iWdX2UKGgGaAloD0MIw/UoXI8CEMCUhpRSlGgVSzJoFkdAp7V16Rhc7nV9lChoBmgJaA9DCPzFbMmqaA3AlIaUUpRoFUsyaBZHQKe1NoFFDv51fZQoaAZoCWgPQwjuCn2wjA0RwJSGlFKUaBVLMmgWR0CnttxcmjTKdX2UKGgGaAloD0MI2IAIceUcFsCUhpRSlGgVSzJoFkdAp7aabF0gbXV9lChoBmgJaA9DCKiMf59xQRHAlIaUUpRoFUsyaBZHQKe2W0HhS+B1fZQoaAZoCWgPQwgANiBCXJkMwJSGlFKUaBVLMmgWR0CnthwUHpr2dX2UKGgGaAloD0MIRnh7EAJSC8CUhpRSlGgVSzJoFkdAp7e8cGTs6nV9lChoBmgJaA9DCLPROT/FgRXAlIaUUpRoFUsyaBZHQKe3enQY1pF1fZQoaAZoCWgPQwiphv2eWLcRwJSGlFKUaBVLMmgWR0CntztBfKISdX2UKGgGaAloD0MImn0eozzTA8CUhpRSlGgVSzJoFkdAp7b7qlgtvnV9lChoBmgJaA9DCFZGI59XHArAlIaUUpRoFUsyaBZHQKe4nEYwZfl1fZQoaAZoCWgPQwhv8IXJVGEPwJSGlFKUaBVLMmgWR0CnuFpcX3xndX2UKGgGaAloD0MIYyXmWUlrFMCUhpRSlGgVSzJoFkdAp7gbMLWqcXV9lChoBmgJaA9DCHrE6LmF7grAlIaUUpRoFUsyaBZHQKe328GLUCt1fZQoaAZoCWgPQwgVNgNckB0UwJSGlFKUaBVLMmgWR0CnuYDlYEGJdX2UKGgGaAloD0MIgJpattZ3CsCUhpRSlGgVSzJoFkdAp7k+45Lh73V9lChoBmgJaA9DCJfHmpFBHhDAlIaUUpRoFUsyaBZHQKe4/8R+SbJ1fZQoaAZoCWgPQwhjmBO0yYEEwJSGlFKUaBVLMmgWR0CnuMBb4agmdX2UKGgGaAloD0MIFK5H4Xq0E8CUhpRSlGgVSzJoFkdAp7pcrqdH2HV9lChoBmgJaA9DCC2VtyOc9gjAlIaUUpRoFUsyaBZHQKe6GqlxffJ1fZQoaAZoCWgPQwi/gF64c2EGwJSGlFKUaBVLMmgWR0CnudtvwVj7dX2UKGgGaAloD0MIzXfwEwcQBsCUhpRSlGgVSzJoFkdAp7mcBbOeKHV9lChoBmgJaA9DCDLJyFnY8wvAlIaUUpRoFUsyaBZHQKe7QyprDZV1fZQoaAZoCWgPQwibVZ+rrQgUwJSGlFKUaBVLMmgWR0CnuwEona37dX2UKGgGaAloD0MIAp1Jm6pbD8CUhpRSlGgVSzJoFkdAp7rB5E+gUXV9lChoBmgJaA9DCAGjy5vDdQnAlIaUUpRoFUsyaBZHQKe6gs0YTCd1fZQoaAZoCWgPQwj/WIgOgWMIwJSGlFKUaBVLMmgWR0CnvCVaW5YpdX2UKGgGaAloD0MIbk26LZFLDMCUhpRSlGgVSzJoFkdAp7vjWRRuTHV9lChoBmgJaA9DCIEIceXsnQDAlIaUUpRoFUsyaBZHQKe7pBj4Hop1fZQoaAZoCWgPQwgBamrZWp8NwJSGlFKUaBVLMmgWR0Cnu2ScbzbwdX2UKGgGaAloD0MIEMzR4/d2BMCUhpRSlGgVSzJoFkdAp70SyUs4DXV9lChoBmgJaA9DCEEN38K64RHAlIaUUpRoFUsyaBZHQKe80NSZSel1fZQoaAZoCWgPQwgawjHLnuQWwJSGlFKUaBVLMmgWR0CnvJGNaQmvdX2UKGgGaAloD0MIuMg9Xd1hEsCUhpRSlGgVSzJoFkdAp7xSI3zcynV9lChoBmgJaA9DCMe9+Q0TzQLAlIaUUpRoFUsyaBZHQKe+B+OOsDJ1fZQoaAZoCWgPQwgd5PVgUhwKwJSGlFKUaBVLMmgWR0CnvcZsj3VTdX2UKGgGaAloD0MI/YLdsG3RC8CUhpRSlGgVSzJoFkdAp72HSQYDT3V9lChoBmgJaA9DCKIL6lvmdBbAlIaUUpRoFUsyaBZHQKe9R9zfaYh1fZQoaAZoCWgPQwhAaD18mUgLwJSGlFKUaBVLMmgWR0CnvvCuMdcTdX2UKGgGaAloD0MIzNJOzeXWEsCUhpRSlGgVSzJoFkdAp76vZwn6VXV9lChoBmgJaA9DCEK1wYnohxPAlIaUUpRoFUsyaBZHQKe+cInjQzF1fZQoaAZoCWgPQwjUCtP3GoIOwJSGlFKUaBVLMmgWR0CnvjEpRXOodX2UKGgGaAloD0MIs7PonQp4C8CUhpRSlGgVSzJoFkdAp7/gkRjBmHV9lChoBmgJaA9DCGwGuCBbFgvAlIaUUpRoFUsyaBZHQKe/nphWo3t1fZQoaAZoCWgPQwhhqS7gZQYSwJSGlFKUaBVLMmgWR0Cnv19at9x7dX2UKGgGaAloD0MI2LlpM05zEcCUhpRSlGgVSzJoFkdAp78f3Hq/unV9lChoBmgJaA9DCOVfyyvXewTAlIaUUpRoFUsyaBZHQKfAvyxRl6J1fZQoaAZoCWgPQwihFK3cCywJwJSGlFKUaBVLMmgWR0CnwH0wSJ0odX2UKGgGaAloD0MIdoh/2NJTFMCUhpRSlGgVSzJoFkdAp8A93B55aHV9lChoBmgJaA9DCMh4lEp4og7AlIaUUpRoFUsyaBZHQKe//le4Tbp1fZQoaAZoCWgPQwhZMVwdANENwJSGlFKUaBVLMmgWR0Cnwasn7YTTdX2UKGgGaAloD0MIXRd+cD51D8CUhpRSlGgVSzJoFkdAp8FpbY9PlHV9lChoBmgJaA9DCB2OrtLdJRDAlIaUUpRoFUsyaBZHQKfBKmrKeTV1fZQoaAZoCWgPQwh2GmmpvN0NwJSGlFKUaBVLMmgWR0CnwOtHxz7udX2UKGgGaAloD0MIP1WFBmJ5EMCUhpRSlGgVSzJoFkdAp8KZ3iaRZHV9lChoBmgJaA9DCE1mvK30ugnAlIaUUpRoFUsyaBZHQKfCV/WDpTx1fZQoaAZoCWgPQwgW/DbEeG0LwJSGlFKUaBVLMmgWR0CnwhjGcWj5dX2UKGgGaAloD0MIMdEgBU9RFsCUhpRSlGgVSzJoFkdAp8HZd4Vym3V9lChoBmgJaA9DCKMdN/xuWgzAlIaUUpRoFUsyaBZHQKfDijmCAc11fZQoaAZoCWgPQwjn/upx3+oGwJSGlFKUaBVLMmgWR0Cnw0hJZntfdX2UKGgGaAloD0MI0sQ7wJOWEcCUhpRSlGgVSzJoFkdAp8MJDkU9IXV9lChoBmgJaA9DCHfYRGYuUAPAlIaUUpRoFUsyaBZHQKfCyapgkTp1fZQoaAZoCWgPQwjtR4rIsKoHwJSGlFKUaBVLMmgWR0CnxLiYsunNdX2UKGgGaAloD0MIe8A8ZMoHBsCUhpRSlGgVSzJoFkdAp8R3JcPe6HV9lChoBmgJaA9DCHeE04IXfRTAlIaUUpRoFUsyaBZHQKfEOJlar3l1fZQoaAZoCWgPQwiTVKaYg2ABwJSGlFKUaBVLMmgWR0Cnw/meDnNgdX2UKGgGaAloD0MIByl4CrkSAcCUhpRSlGgVSzJoFkdAp8YeUyHmBHV9lChoBmgJaA9DCAtBDkqY6QfAlIaUUpRoFUsyaBZHQKfF3O/tY0V1fZQoaAZoCWgPQwifceFASLYUwJSGlFKUaBVLMmgWR0CnxZ5RTCLudX2UKGgGaAloD0MIL2r3qwD/B8CUhpRSlGgVSzJoFkdAp8VgLqlgt3V9lChoBmgJaA9DCP2FHjF6Lg/AlIaUUpRoFUsyaBZHQKfHpDOTq0N1fZQoaAZoCWgPQwjnUfF/RzQNwJSGlFKUaBVLMmgWR0Cnx2LkCFK1dX2UKGgGaAloD0MIdQMF3smHC8CUhpRSlGgVSzJoFkdAp8ckPxx1gnV9lChoBmgJaA9DCOViDKzjOAnAlIaUUpRoFUsyaBZHQKfG5W5paid1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}