File size: 15,669 Bytes
ea6bb4e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a695ed02e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a695ed08c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690989364346012666, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAEVXLPj97r7s24BA/EVXLPj97r7s24BA/EVXLPj97r7s24BA/EVXLPj97r7s24BA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhPyPPj7FMz/CBFE+uFRBP3aG3b7CzVS/D5Khvznx1r+Fh46/i0g7P0C0ar2c3CQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAARVcs+P3uvuzbgED+zWBA97DCaOpvzGz0RVcs+P3uvuzbgED+zWBA97DCaOpvzGz0RVcs+P3uvuzbgED+zWBA97DCaOpvzGz0RVcs+P3uvuzbgED+zWBA97DCaOpvzGz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39713338 -0.00535527  0.5659212 ]\n [ 0.39713338 -0.00535527  0.5659212 ]\n [ 0.39713338 -0.00535527  0.5659212 ]\n [ 0.39713338 -0.00535527  0.5659212 ]]", "desired_goal": "[[ 0.28122342  0.7022284   0.20411971]\n [ 0.75519896 -0.43266648 -0.8312646 ]\n [-1.2622699  -1.6792365  -1.1135107 ]\n [ 0.73157567 -0.05730081  0.16099781]]", "observation": "[[ 0.39713338 -0.00535527  0.5659212   0.03524084  0.00117638  0.03807412]\n [ 0.39713338 -0.00535527  0.5659212   0.03524084  0.00117638  0.03807412]\n [ 0.39713338 -0.00535527  0.5659212   0.03524084  0.00117638  0.03807412]\n [ 0.39713338 -0.00535527  0.5659212   0.03524084  0.00117638  0.03807412]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8r5Gu+Tc7z2guKs7IIn1PQAvCr5XUxA+Xa6mPFTHhr1pYq49WF2dvTOdhz3d8xo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.00303262  0.11712053  0.00524051]\n [ 0.11989045 -0.13494492  0.14094292]\n [ 0.02034681 -0.06580988  0.08514864]\n [-0.0768382   0.0662178   0.15132089]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc/c5Plqc6b+UhpRSlIwBbJRLMowBdJRHQLaMy51Ng0F1fZQoaAZoCWgPQwhA+FCiJY/xv5SGlFKUaBVLMmgWR0C2jKj7655JdX2UKGgGaAloD0MIdqVlpN5T4L+UhpRSlGgVSzJoFkdAtoyG5PM0QHV9lChoBmgJaA9DCMkAUMWNW96/lIaUUpRoFUsyaBZHQLaMZOARTS91fZQoaAZoCWgPQwgEBHP0+L3gv5SGlFKUaBVLMmgWR0C2jXo7aIvbdX2UKGgGaAloD0MInN1aJsPx4r+UhpRSlGgVSzJoFkdAto1XI0ZWJnV9lChoBmgJaA9DCGrC9pMxPuW/lIaUUpRoFUsyaBZHQLaNNL9deIF1fZQoaAZoCWgPQwiUbeAO1Gnxv5SGlFKUaBVLMmgWR0C2jRJKzzErdX2UKGgGaAloD0MIbeNPVDYs6r+UhpRSlGgVSzJoFkdAto3+Wom5UnV9lChoBmgJaA9DCKs+V1uxf/G/lIaUUpRoFUsyaBZHQLaN21YyO7x1fZQoaAZoCWgPQwjhfsADAwjrv5SGlFKUaBVLMmgWR0C2jbjb8FY/dX2UKGgGaAloD0MISx5Pyw/c7L+UhpRSlGgVSzJoFkdAto2WcawUxnV9lChoBmgJaA9DCCKLNPEO8Oi/lIaUUpRoFUsyaBZHQLaOhAMlTm51fZQoaAZoCWgPQwjqIK8Hk+Ljv5SGlFKUaBVLMmgWR0C2jmDwDvE1dX2UKGgGaAloD0MIxJWzd0Zb6r+UhpRSlGgVSzJoFkdAto4+fseGPHV9lChoBmgJaA9DCDttjQjGAfK/lIaUUpRoFUsyaBZHQLaOHA1vVEx1fZQoaAZoCWgPQwjHLlG9NbDnv5SGlFKUaBVLMmgWR0C2jwfdM0xedX2UKGgGaAloD0MIFasGYW43+r+UhpRSlGgVSzJoFkdAto7ky+HrQnV9lChoBmgJaA9DCHIYzF8hc/q/lIaUUpRoFUsyaBZHQLaOwl/6O5t1fZQoaAZoCWgPQwjC2hg74aXov5SGlFKUaBVLMmgWR0C2jp/y5I6KdX2UKGgGaAloD0MIU3WPbK4a97+UhpRSlGgVSzJoFkdAto+PjyWiUXV9lChoBmgJaA9DCNi3k4jwr+S/lIaUUpRoFUsyaBZHQLaPbJJoTPB1fZQoaAZoCWgPQwjZeLDFbl/zv5SGlFKUaBVLMmgWR0C2j0oqPOpsdX2UKGgGaAloD0MIXFmis8wi77+UhpRSlGgVSzJoFkdAto8ntShrWXV9lChoBmgJaA9DCDj5LTpZ6uW/lIaUUpRoFUsyaBZHQLaQFHYHxBp1fZQoaAZoCWgPQwi4dTdPdUjvv5SGlFKUaBVLMmgWR0C2j/FvIfbLdX2UKGgGaAloD0MITMKFPIIb2b+UhpRSlGgVSzJoFkdAto/O/k/8mHV9lChoBmgJaA9DCLBUF/Ayw+m/lIaUUpRoFUsyaBZHQLaPrIy0rsl1fZQoaAZoCWgPQwgqdF5jl6jXv5SGlFKUaBVLMmgWR0C2kJyZa3ZxdX2UKGgGaAloD0MIlKXW+4120b+UhpRSlGgVSzJoFkdAtpB5nanJk3V9lChoBmgJaA9DCDLLngQ2Z+S/lIaUUpRoFUsyaBZHQLaQVwBHTZx1fZQoaAZoCWgPQwjqew3BcRnwv5SGlFKUaBVLMmgWR0C2kDSPU8V6dX2UKGgGaAloD0MIkzXqIRrd5r+UhpRSlGgVSzJoFkdAtpEi4jKPn3V9lChoBmgJaA9DCJSl1vuN9ui/lIaUUpRoFUsyaBZHQLaQ/7Ciypt1fZQoaAZoCWgPQwjD8ufbgqX2v5SGlFKUaBVLMmgWR0C2kN074i5edX2UKGgGaAloD0MI2J3uPPEc57+UhpRSlGgVSzJoFkdAtpC65oXbd3V9lChoBmgJaA9DCI53R8Zqs/a/lIaUUpRoFUsyaBZHQLaRrUPhAGB1fZQoaAZoCWgPQwhWf4RhwJLqv5SGlFKUaBVLMmgWR0C2kYo5YHPedX2UKGgGaAloD0MIrBkZ5C7C87+UhpRSlGgVSzJoFkdAtpFn0J4SpXV9lChoBmgJaA9DCGUBE7h19/G/lIaUUpRoFUsyaBZHQLaRRV+qioN1fZQoaAZoCWgPQwj7rgj+t5Ltv5SGlFKUaBVLMmgWR0C2kjKyB06pdX2UKGgGaAloD0MIIo51cRuN8r+UhpRSlGgVSzJoFkdAtpIPn9vS+nV9lChoBmgJaA9DCHdlFwyuuei/lIaUUpRoFUsyaBZHQLaR7UornT11fZQoaAZoCWgPQwg5Drxa7szwv5SGlFKUaBVLMmgWR0C2kcriQ1aXdX2UKGgGaAloD0MI4WHaN/dX5r+UhpRSlGgVSzJoFkdAtpLAwfyPMnV9lChoBmgJaA9DCNtQMc7fhOe/lIaUUpRoFUsyaBZHQLaSnaA4GUx1fZQoaAZoCWgPQwjn5EUm4Ffov5SGlFKUaBVLMmgWR0C2knsRcu8LdX2UKGgGaAloD0MIuAGfH0YI6b+UhpRSlGgVSzJoFkdAtpJYs/Y8MnV9lChoBmgJaA9DCMf17/rM2e2/lIaUUpRoFUsyaBZHQLaTRcmBvrJ1fZQoaAZoCWgPQwg3M/rRcMrwv5SGlFKUaBVLMmgWR0C2kyK508vFdX2UKGgGaAloD0MIeLXcmQkG57+UhpRSlGgVSzJoFkdAtpMAQUYbbXV9lChoBmgJaA9DCNRgGoaPyPS/lIaUUpRoFUsyaBZHQLaS3dWQwK11fZQoaAZoCWgPQwgUJSGRtvHfv5SGlFKUaBVLMmgWR0C2k9AKfFrEdX2UKGgGaAloD0MIyvli78WX67+UhpRSlGgVSzJoFkdAtpOtBppN9HV9lChoBmgJaA9DCFKZYg6Cju6/lIaUUpRoFUsyaBZHQLaTipnpSrJ1fZQoaAZoCWgPQwglPneC/dfrv5SGlFKUaBVLMmgWR0C2k2g/gR9PdX2UKGgGaAloD0MIwF/MlqxK+7+UhpRSlGgVSzJoFkdAtpRYWJrLyXV9lChoBmgJaA9DCEQy5Nh6hty/lIaUUpRoFUsyaBZHQLaUNTs6aLJ1fZQoaAZoCWgPQwjdtBmnIerxv5SGlFKUaBVLMmgWR0C2lBLKifxudX2UKGgGaAloD0MIpOTVOQZk8L+UhpRSlGgVSzJoFkdAtpPwWpIcznV9lChoBmgJaA9DCG2NCMbBJei/lIaUUpRoFUsyaBZHQLaU3sUqQRx1fZQoaAZoCWgPQwjpgY/BitPpv5SGlFKUaBVLMmgWR0C2lLu2VmjCdX2UKGgGaAloD0MII/WeymkP+r+UhpRSlGgVSzJoFkdAtpSZJ6IFeXV9lChoBmgJaA9DCCGvB5Pi4+q/lIaUUpRoFUsyaBZHQLaUdsdkrgB1fZQoaAZoCWgPQwjU1LK1voj2v5SGlFKUaBVLMmgWR0C2lV3DR+jNdX2UKGgGaAloD0MIGlBvRs2X97+UhpRSlGgVSzJoFkdAtpU6j1wo9nV9lChoBmgJaA9DCAyVfy2v3OS/lIaUUpRoFUsyaBZHQLaVGAgPmPp1fZQoaAZoCWgPQwhcj8L1KBzzv5SGlFKUaBVLMmgWR0C2lPWOuJUHdX2UKGgGaAloD0MIxooaTMNw9b+UhpRSlGgVSzJoFkdAtpXiXC0ngHV9lChoBmgJaA9DCA2MvKyJBe6/lIaUUpRoFUsyaBZHQLaVv2ETQE91fZQoaAZoCWgPQwhKDAIrh1b7v5SGlFKUaBVLMmgWR0C2lZ0OiFj/dX2UKGgGaAloD0MI5Gcj101p9L+UhpRSlGgVSzJoFkdAtpV6yxA0K3V9lChoBmgJaA9DCHfX2ZB/Zsq/lIaUUpRoFUsyaBZHQLaWXMJhOQB1fZQoaAZoCWgPQwiCH9Ww3xPyv5SGlFKUaBVLMmgWR0C2ljmgOBlMdX2UKGgGaAloD0MITGvT2F6L8L+UhpRSlGgVSzJoFkdAtpYXFMqSYHV9lChoBmgJaA9DCExuFFlrKOK/lIaUUpRoFUsyaBZHQLaV9KMNtqJ1fZQoaAZoCWgPQwg2zTtO0RHnv5SGlFKUaBVLMmgWR0C2luIO2AoYdX2UKGgGaAloD0MIYf4KmSuD8b+UhpRSlGgVSzJoFkdAtpa+2E0zj3V9lChoBmgJaA9DCO/hkuNOaeu/lIaUUpRoFUsyaBZHQLaWnGNrCWN1fZQoaAZoCWgPQwhvvaYHBSXwv5SGlFKUaBVLMmgWR0C2lnnmmtQsdX2UKGgGaAloD0MIFO0qpPwk5b+UhpRSlGgVSzJoFkdAtpeOU+s5n3V9lChoBmgJaA9DCHTQJRx6y/e/lIaUUpRoFUsyaBZHQLaXa3/xUed1fZQoaAZoCWgPQwj7zi9K0F/Wv5SGlFKUaBVLMmgWR0C2l0l01ZTydX2UKGgGaAloD0MISl0yjpHs67+UhpRSlGgVSzJoFkdAtpcnW1+iJ3V9lChoBmgJaA9DCDihEAGHUOq/lIaUUpRoFUsyaBZHQLaYWdO6/Zd1fZQoaAZoCWgPQwin6h7ZXLXpv5SGlFKUaBVLMmgWR0C2mDc2BJ7LdX2UKGgGaAloD0MIeo1donqrA8CUhpRSlGgVSzJoFkdAtpgVQpF1CHV9lChoBmgJaA9DCAH8U6pE2ey/lIaUUpRoFUsyaBZHQLaX81ejVQR1fZQoaAZoCWgPQwgIBDqTNlXdv5SGlFKUaBVLMmgWR0C2mTOEmICVdX2UKGgGaAloD0MIzAwbZf3m/7+UhpRSlGgVSzJoFkdAtpkQytV7yHV9lChoBmgJaA9DCHdoWIy61uG/lIaUUpRoFUsyaBZHQLaY7rv9cbB1fZQoaAZoCWgPQwgSg8DKoQX+v5SGlFKUaBVLMmgWR0C2mMy9mHxjdX2UKGgGaAloD0MIwOyePCxU87+UhpRSlGgVSzJoFkdAtpn1wFTvRnV9lChoBmgJaA9DCC2zCMVWUPC/lIaUUpRoFUsyaBZHQLaZ0qebutx1fZQoaAZoCWgPQwjpKXKIuDnpv5SGlFKUaBVLMmgWR0C2mbA3YL9ddX2UKGgGaAloD0MIVgvsMZHS6b+UhpRSlGgVSzJoFkdAtpmNwQ176nV9lChoBmgJaA9DCG7ajNMQlfO/lIaUUpRoFUsyaBZHQLaaeJd0JWx1fZQoaAZoCWgPQwgBGTp2UIndv5SGlFKUaBVLMmgWR0C2mlVqagEmdX2UKGgGaAloD0MIfQVpxqLp+L+UhpRSlGgVSzJoFkdAtpoy/gzguXV9lChoBmgJaA9DCHUGRl7WxOC/lIaUUpRoFUsyaBZHQLaaEJiy6c11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}