Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +47 -47
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 285.48 +/- 18.94
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f03bc19c940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f03bc19c9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f03bc19ca60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f03bc19caf0>", "_build": "<function ActorCriticPolicy._build at 0x7f03bc19cb80>", "forward": "<function ActorCriticPolicy.forward at 0x7f03bc19cc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f03bc19cca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f03bc19cd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f03bc19cdc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f03bc19ce50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f03bc19cee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f03bc19cf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f03bc193500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 368000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652272866.0520153, "learning_rate": 0.0, "tensorboard_log": "logs", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAACWczz21Fi69O4Gs+0+aq687Hs6yqebMwAAgD8AAIA/DcoPvmtLJj+jgkU++8JZvzhAqL5xz6M+AAAAAAAAAAAA9oM8yrukPwrI1j1PIBu/VYuOPXC8Vj4AAAAAAAAAADOtiz3ogZM9aqyMvjEQ4b5zBEs9BaP4vQAAAAAAAAAADfOcvcQIwj8BnpC+vKy6vZT1QL0bHXG+AAAAAAAAAAD7loS+6UVPP1vYYz4T2EW/U+UEvwIyiz4AAAAAAAAAAM2xhbw0uMu8UPJWPmUc9Dwd1i89WyyMPQAAgD8AAIA/s5y8PTbcsz9KQfQ+RLp2vqQS7j37X3Y+AAAAAAAAAABm2ls8nBM6vD1rdj27Clc9A2GHveanpDsAAIA/AACAP1N3ET4k39k+/3PCvRUGN7/Ssos+cxcgvgAAAAAAAAAAU9sivgS/hD7+DOY+UHYhv67fPL4S3cA+AAAAAAAAAADm6DQ+KRmePw7h1j5/yDO/IV7UPslVtT4AAAAAAAAAAM2sILqfxL67tBvGO8m3AD1OVWo8yyozPAAAgD8AAIA/AICCOkhFirrKDlS0CzGfL23mJLtm6YczAACAPwAAgD/g4SO+SWmUPiVD+D4KTTe/QMQHviP52z4AAAAAAAAAAJofhTxSHOK7SpsFuxN1yDw83Z88j2q1OgAAgD8AAIA/ZiujvMV4gz/KC4+9vDiCv1Mjeb1Pir29AAAAAAAAAADjD2G+DW8pPxwAiz4n2Ua/TvHSvivIeD4AAAAAAAAAAE1UlL0RpkU/YnHjvFTGUr/1VoG+sh9NPQAAAAAAAAAAQDouvmjcrz/SeQG/TyfovhXL8b6ahtC+AAAAAAAAAADmp249bu7JPepqVb5fNQC/Ot+4PQ6pHL4AAAAAAAAAAGamNrtIx6S6hbxRMpwh5LCMYsW6xuSmsgAAgD8AAIA/mvGSO1Kg67vut2W7umMwPMAwP736IBk9AACAPwAAgD8AsCs8PW4uu2a+gjovB7Q8A14pvMuTmT0AAIA/AACAPzNA47yMbBM+vmdvPcaaAr+SxpW9he6hPQAAAAAAAAAAc2ZEvncCST9nKyC8ZwIfvzlsBb+hYRw+AAAAAAAAAACanaq718s9uzZffLye45k8JTWkvGaXgz0AAIA/AACAPzMc/bzuiLq8TVViPt2Ymr3tWiO9stIHvgAAgD8AAIA/M+fQO8NwDbw2q2c9MmcDvcZx47xj+OS+AACAPwAAgD8t45A+gG4wP3ZSA77vzUe/OM7gPjLim74AAAAAAAAAAM2kbzuFJ4G7zJQVvkzSsTzcWb48tO6WvQAAgD8AAIA/zchOvSc3LT9+j2E7g+RbvzCd/71q5kQ9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.67232, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfqg0YibmckCUhpRSlIwBbJRLpowBdJRHQHUGU/W1+iJ1fZQoaAZoCWgPQwj0o+GU+eZzQJSGlFKUaBVLs2gWR0B1B2FK02LpdX2UKGgGaAloD0MI5wDBHL1WckCUhpRSlGgVS7JoFkdAdQeE6T4cm3V9lChoBmgJaA9DCKbVkLhHanBAlIaUUpRoFUufaBZHQHUHz4xk/bF1fZQoaAZoCWgPQwisAN9tHkVzQJSGlFKUaBVLpmgWR0B1B/T7VJ+VdX2UKGgGaAloD0MIxjTTvU6DckCUhpRSlGgVS7hoFkdAdQgtwJgLJHV9lChoBmgJaA9DCEfoZ+o1pnJAlIaUUpRoFUu2aBZHQHUIUvboKUp1fZQoaAZoCWgPQwghdTv7CrJyQJSGlFKUaBVLiWgWR0B1pImBvrGBdX2UKGgGaAloD0MIforjwCu5cECUhpRSlGgVS6FoFkdAdaWfb9If83V9lChoBmgJaA9DCPLSTWIQhHJAlIaUUpRoFUuYaBZHQHWnOC9RJmN1fZQoaAZoCWgPQwgsnKT544JzQJSGlFKUaBVLt2gWR0B1qCwUxmCidX2UKGgGaAloD0MISiTRy+idcUCUhpRSlGgVS6hoFkdAdah1OCXhO3V9lChoBmgJaA9DCGSuDKpNcHNAlIaUUpRoFUu+aBZHQHWpQUg0TDh1fZQoaAZoCWgPQwjkLy3qk85xQJSGlFKUaBVLk2gWR0B1qcsMAmzCdX2UKGgGaAloD0MIqFMe3cjucUCUhpRSlGgVS4NoFkdAdaopeu3c6HV9lChoBmgJaA9DCBsuck/XeHRAlIaUUpRoFUukaBZHQHWrLDQ7cO91fZQoaAZoCWgPQwh+calKW0lyQJSGlFKUaBVLqGgWR0B1q1iLEUCadX2UKGgGaAloD0MITDeJQWBWckCUhpRSlGgVS59oFkdAdatSS/0ulHV9lChoBmgJaA9DCHPxtz3Bc3FAlIaUUpRoFUuUaBZHQHWsSYb83uN1fZQoaAZoCWgPQwiNRdPZyRVyQJSGlFKUaBVLkmgWR0B1rM57w8W9dX2UKGgGaAloD0MItp+M8WF4c0CUhpRSlGgVS5hoFkdAdazHbh3qzXV9lChoBmgJaA9DCPUsCOX9cHBAlIaUUpRoFUubaBZHQHWs8+iaiK11fZQoaAZoCWgPQwgiwyreyKVxQJSGlFKUaBVLqmgWR0B1raJrLyMDdX2UKGgGaAloD0MILo7KTRQ0ckCUhpRSlGgVS6loFkdAda4VlPJq7HV9lChoBmgJaA9DCJMCC2CKYXJAlIaUUpRoFUuRaBZHQHWvae05U991fZQoaAZoCWgPQwjirl5FBuxzQJSGlFKUaBVLqWgWR0B1r8j7hvR7dX2UKGgGaAloD0MIoaNVLWmRc0CUhpRSlGgVS7doFkdAdbAgrH2h7HV9lChoBmgJaA9DCMNHxJRIOHJAlIaUUpRoFUu1aBZHQHWw74SHuZ11fZQoaAZoCWgPQwiQ3QVKisJyQJSGlFKUaBVLt2gWR0B1sh7v5P/JdX2UKGgGaAloD0MITrnCu1zdcECUhpRSlGgVS6ZoFkdAdbIeZXuE3HV9lChoBmgJaA9DCBIT1PAtKnFAlIaUUpRoFUueaBZHQHWy9s7+1jR1fZQoaAZoCWgPQwjqIoWyMP5wQJSGlFKUaBVLjGgWR0B1tAgJTl1bdX2UKGgGaAloD0MI8s8M4kOWcUCUhpRSlGgVS5JoFkdAdbRq7iADrHV9lChoBmgJaA9DCBv1EI3u0XFAlIaUUpRoFUuVaBZHQHW07Ddgv111fZQoaAZoCWgPQwjb3m5JDuxzQJSGlFKUaBVLrGgWR0B1tj8k2P1ddX2UKGgGaAloD0MIKCob1hRFckCUhpRSlGgVS6RoFkdAdbZkjX4CZHV9lChoBmgJaA9DCPRNmgZFG3RAlIaUUpRoFUu+aBZHQHW2rlmvnr91fZQoaAZoCWgPQwid1Jel3VtzQJSGlFKUaBVLm2gWR0B1tybCrLhadX2UKGgGaAloD0MI409UNuzIcUCUhpRSlGgVS6VoFkdAdbc9/jKgZnV9lChoBmgJaA9DCAYOaOnKq3NAlIaUUpRoFUu3aBZHQHW4dKZlWfd1fZQoaAZoCWgPQwhjC0EOikBxQJSGlFKUaBVLomgWR0B1uQsvqTr3dX2UKGgGaAloD0MIZCR7hNrSckCUhpRSlGgVS55oFkdAdbrh7E5yVHV9lChoBmgJaA9DCGzp0VQPRnJAlIaUUpRoFUuoaBZHQHW7QyAQQMB1fZQoaAZoCWgPQwgMsmX5+pRyQJSGlFKUaBVLl2gWR0B1u4pjMFEBdX2UKGgGaAloD0MIV81zRH44ckCUhpRSlGgVS6hoFkdAdb3gmZ3LWHV9lChoBmgJaA9DCJc3h2v1f3NAlIaUUpRoFUuiaBZHQHW+LQgLZzx1fZQoaAZoCWgPQwiu78NBwnlxQJSGlFKUaBVLn2gWR0B1vverMkhSdX2UKGgGaAloD0MIYKxvYDKncUCUhpRSlGgVS5xoFkdAdb8cqvvBrXV9lChoBmgJaA9DCDHqWnvfyHNAlIaUUpRoFUu9aBZHQHW/tITXarZ1fZQoaAZoCWgPQwgT7pV562ZwQJSGlFKUaBVLmmgWR0B1v9Gus90SdX2UKGgGaAloD0MI2iCTjJw3ckCUhpRSlGgVS6ZoFkdAdcBeD3/PxHV9lChoBmgJaA9DCE6YMJpVdnRAlIaUUpRoFUu1aBZHQHXAs6V+qip1fZQoaAZoCWgPQwhMb38umvpzQJSGlFKUaBVLzWgWR0B1wM/4ZdfLdX2UKGgGaAloD0MIjLrW3mf3cUCUhpRSlGgVS5FoFkdAdcEIDYAbQ3V9lChoBmgJaA9DCOay0Tk/EHJAlIaUUpRoFUuPaBZHQHXB6PGQ0XR1fZQoaAZoCWgPQwiCxHb3wIFyQJSGlFKUaBVLv2gWR0B1wckzGgjAdX2UKGgGaAloD0MIe4MvTGYPcUCUhpRSlGgVS59oFkdAdcIz41xbS3V9lChoBmgJaA9DCJuuJ7quY3NAlIaUUpRoFUuraBZHQHXCPJNj9XN1fZQoaAZoCWgPQwgOoyB4fHJzQJSGlFKUaBVLvWgWR0B1wwIfKZDzdX2UKGgGaAloD0MIwVJdwMudcECUhpRSlGgVS5xoFkdAdcRftQbdanV9lChoBmgJaA9DCGCwG7at8XFAlIaUUpRoFUuWaBZHQHXEhs67ulZ1fZQoaAZoCWgPQwhOYaWCCmRyQJSGlFKUaBVLr2gWR0B1xH0L+glGdX2UKGgGaAloD0MI73TniaclckCUhpRSlGgVS6doFkdAdcWHO8kD6nV9lChoBmgJaA9DCNIag07IBXBAlIaUUpRoFUuaaBZHQHXGo0Mw1zh1fZQoaAZoCWgPQwgqjgOv1vxyQJSGlFKUaBVLmWgWR0B1x63pfQa8dX2UKGgGaAloD0MIiujX1g+tckCUhpRSlGgVS65oFkdAdchh11W8y3V9lChoBmgJaA9DCJyHE5jOfXBAlIaUUpRoFUuyaBZHQHXIhPCVKPJ1fZQoaAZoCWgPQwjfUPhs3S5wQJSGlFKUaBVLkmgWR0B1yRSl3yI6dX2UKGgGaAloD0MIjdXm/1UkdECUhpRSlGgVS7VoFkdAdcsqPfbblHV9lChoBmgJaA9DCL/zixK0MnJAlIaUUpRoFUuyaBZHQHXLHcDbJwN1fZQoaAZoCWgPQwg+esN9pPBzQJSGlFKUaBVLsWgWR0B1y3jR2KVIdX2UKGgGaAloD0MI/3ivWtleckCUhpRSlGgVS7NoFkdAdcvNR3u/lHV9lChoBmgJaA9DCI+K/ztiTnNAlIaUUpRoFUuyaBZHQHXNuzD4xlB1fZQoaAZoCWgPQwjSOqqaoJZyQJSGlFKUaBVLo2gWR0B1zm+zt1IRdX2UKGgGaAloD0MIpP56hQXlc0CUhpRSlGgVS6xoFkdAdc7fjjrAxnV9lChoBmgJaA9DCIJ1HD/Un29AlIaUUpRoFUuNaBZHQHXPQU+LWI51fZQoaAZoCWgPQwjbTIV4pDt0QJSGlFKUaBVLrWgWR0B1z2VW0Z3tdX2UKGgGaAloD0MIo3kAi7xGcECUhpRSlGgVS6BoFkdAddC8YQ8OkXV9lChoBmgJaA9DCIS7s3bb3nJAlIaUUpRoFUuHaBZHQHXRTY/Vy3l1fZQoaAZoCWgPQwiU93E0B45xQJSGlFKUaBVLm2gWR0B10aPNmlImdX2UKGgGaAloD0MIgGYQH5jDckCUhpRSlGgVS5VoFkdAddHsBhhH9XV9lChoBmgJaA9DCOi7W1mi/nJAlIaUUpRoFUu4aBZHQHXTQgcLjPx1fZQoaAZoCWgPQwi5N79h4gZwQJSGlFKUaBVLm2gWR0B11Bl9Sde6dX2UKGgGaAloD0MITFEujd9Mc0CUhpRSlGgVS6hoFkdAddRgx8D0UXV9lChoBmgJaA9DCOD2BIlt2HJAlIaUUpRoFUutaBZHQHXUpk9U0el1fZQoaAZoCWgPQwhtqBjn75tvQJSGlFKUaBVLsmgWR0B11OjBVMmGdX2UKGgGaAloD0MIy59vC9Z1ckCUhpRSlGgVS7loFkdAddUakRBeHHV9lChoBmgJaA9DCFJIMqv3yXFAlIaUUpRoFUupaBZHQHXVecQRPGh1fZQoaAZoCWgPQwiun/6z5lVxQJSGlFKUaBVLwGgWR0B11V/mT1TSdX2UKGgGaAloD0MIoYZvYd0pcECUhpRSlGgVS5RoFkdAddXqxC6YmnV9lChoBmgJaA9DCAlszsEzInJAlIaUUpRoFUuraBZHQHXW68xsVL11fZQoaAZoCWgPQwheEJGaNptwQJSGlFKUaBVLmmgWR0B118Od5IH1dX2UKGgGaAloD0MIMWE0K1sVdECUhpRSlGgVS75oFkdAddg/YraufXV9lChoBmgJaA9DCMzUJHhDvk9AlIaUUpRoFUt0aBZHQHXZpv5xiod1fZQoaAZoCWgPQwj7PEZ55plzQJSGlFKUaBVLuGgWR0B12ew8nuzAdX2UKGgGaAloD0MIBWnGoilLcUCUhpRSlGgVS5hoFkdAddrF/QSi/XV9lChoBmgJaA9DCF71gHkIXXFAlIaUUpRoFUuwaBZHQHXbsjzI3it1fZQoaAZoCWgPQwjlX8srF4lyQJSGlFKUaBVLnGgWR0B12+KEWZZ0dX2UKGgGaAloD0MI6L0xBIBHckCUhpRSlGgVS61oFkdAddx05EMLGHV9lChoBmgJaA9DCMP0vYagTHNAlIaUUpRoFUvRaBZHQHXdMKkVN6B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 19344, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTEzLTBlNmFiMzM4MjdhYj6UjAg8bGFtYmRhPpRLDUMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVyQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAAAAAAAAAAAAJRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9531e4b400>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9531e4b490>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9531e4b520>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9531e4b5b0>", "_build": "<function ActorCriticPolicy._build at 0x7f9531e4b640>", "forward": "<function ActorCriticPolicy.forward at 0x7f9531e4b6d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9531e4b760>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9531e4b7f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9531e4b880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9531e4b910>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9531e4b9a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9531e4ba30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f94d249cc40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687383684146377815, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrYTD5ILOQ+lZZbvkTUKb8i8ZU+ywCNvgAAAAAAAAAAGpy5vQ+MNj29XrM+PByrvkLeuj0HqYI+AAAAAAAAAABa2UY+dGjNPt2uf76BZRy/soKDPoYAiL4AAAAAAAAAAGZ89bzoJcA/O3JIvkVY6T1E4hw8XUWAvQAAAAAAAAAAs/ozvUPVH7z/t0s+gua6vX7iMTtVlze/AACAPwAAgD/aYVg+2C+sPzv+ET9MQQm/b+vzPmCTrz4AAAAAAAAAAADAb7xoZmU/hetXvaF6e7+3wj69HxsSvQAAAAAAAAAAGukvPXPKkj8SECk+Pmc7v/hnyj1P7wE+AAAAAAAAAACaRhu9W8OaPdDRdz7B2u2+c3hWPF+wOz4AAAAAAAAAAM3807zSIYG71sSWPlcvDr7YcPK8iMCTvwAAgD8AAAAAzSyYO2w/jrsixgA+s7OMPLRLujyIj3C9AACAPwAAgD8zS4o7Tl+fvOuKtbynd1c9pJsDPv5cWDwAAIA/AACAPwBMFDxcK2K6qDaVOLOEfjOaQI06BDmvtwAAgD8AAIA/ej4sPiVBAT9uvD++LOAjv95Bgj47xy2+AAAAAAAAAADaLL09Vd86PrBDtL6nlAa/NCAPvjp1l74AAAAAAAAAACDXBr7xf4o+WpJ5Pt3yJ78F7TO+DhZqPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJQe0TlDF+MAWyUS5CMAXSUR0C7hl6rWAf/dX2UKGgGR0Bx8LTjNpudaAdLt2gIR0C7hmFANXo1dX2UKGgGR0Bw11G7SRbKaAdLnmgIR0C7hnzVH4GmdX2UKGgGR0BxmHsa86FNaAdLk2gIR0C7hoosZpBYdX2UKGgGR0BySL7+DOC5aAdLnGgIR0C7hpic0+C9dX2UKGgGR0BzZBzq8lHCaAdLpmgIR0C7hqgFPi1idX2UKGgGR0BxxaPKdQO4aAdLlGgIR0C7hrGtdRixdX2UKGgGR0BzJdbqyGBXaAdLvGgIR0C7hsGRRuTBdX2UKGgGR0BzN2xt52QoaAdLxGgIR0C7isavicXndX2UKGgGR0BxNh2KVII4aAdLmGgIR0C7isp1zQu3dX2UKGgGR0BzAXF2mpEQaAdLo2gIR0C7is1j3EhrdX2UKGgGR0Bx36NOuaF3aAdLmmgIR0C7itdihFmWdX2UKGgGR0By3W7ulXRxaAdL4GgIR0C7itdF4LThdX2UKGgGR0BxSbNyHVPOaAdLm2gIR0C7iu9mxt52dX2UKGgGR0BxXiFSKm8/aAdLs2gIR0C7iv1dLQHBdX2UKGgGR0BxGFe0G/vfaAdLu2gIR0C7ixfs3Q2NdX2UKGgGR0ByZidVea8ZaAdLtWgIR0C7iyZ9ZzPsdX2UKGgGR0Bwn4ox59mZaAdLoGgIR0C7iynwXqJNdX2UKGgGR0By4uClJpWWaAdLv2gIR0C7izAevIOpdX2UKGgGR0BxRLgR9PUKaAdLtGgIR0C7izeBxxT9dX2UKGgGR0ByKAoXsPataAdLrWgIR0C7i069bor4dX2UKGgGR0Byqt8c+7lJaAdLv2gIR0C7i1V8b70ndX2UKGgGR0ByoMqMFUyYaAdLuGgIR0C7i2WorFwUdX2UKGgGR0BwHXnW8RL9aAdLt2gIR0C7i3WRNh3JdX2UKGgGR0By5JxWDHwPaAdLuGgIR0C7i5ylSCOFdX2UKGgGR0BxrI1EVnEmaAdLtmgIR0C7i6W+CbtrdX2UKGgGR0By6vMkhRqHaAdLymgIR0C7i7FVLi++dX2UKGgGR0BylB1gYxcnaAdL1WgIR0C7i7rkjopydX2UKGgGR0ByGb1dxAB1aAdLsmgIR0C7i762rn1WdX2UKGgGR0By+rA+IMz/aAdLzmgIR0C7i8QY+B6KdX2UKGgGR0BxvcRXfZVXaAdLs2gIR0C7i8z6nBLxdX2UKGgGR0ByGBDgIhQnaAdLnmgIR0C7i+hdMTN/dX2UKGgGR0BxoR0jkdWAaAdLu2gIR0C7i/FbmlqKdX2UKGgGR0BzDJ7NSqEOaAdLwWgIR0C7jAiNKh+OdX2UKGgGR0BwezznRsuWaAdLuWgIR0C7jBCVObiIdX2UKGgGR0BzvziLl3hXaAdLxWgIR0C7jBCM98qndX2UKGgGR0BxxwvduYQbaAdLrWgIR0C7jBsBltj1dX2UKGgGR0BzWFlar3j/aAdLsmgIR0C7jDalLvkSdX2UKGgGR0Bx9PvAoG6gaAdLjGgIR0C7jFp8neBQdX2UKGgGR0ByvEarFOwgaAdL42gIR0C7jF+yu6mPdX2UKGgGR0Bw8M5IYm9haAdLrWgIR0C7jGY7V8TjdX2UKGgGR0BvPZzYEnstaAdLqGgIR0C7jGg75mAcdX2UKGgGR0B0tcD5j6N3aAdL02gIR0C7jG2HHmzTdX2UKGgGR0BzCwpCrtE5aAdLsWgIR0C7jHu7pV0cdX2UKGgGR0BybG8scyWSaAdLr2gIR0C7jIUlqrR0dX2UKGgGR0ByN8EU0vXcaAdLsGgIR0C7jJRaC+URdX2UKGgGR0BzRvJ5mh/RaAdLxWgIR0C7jKJD/lySdX2UKGgGR0B0Dc4aP0ZnaAdLtGgIR0C7jL0kB0ZFdX2UKGgGR0ByqhkkKNQ1aAdLvWgIR0C7jL67VawEdX2UKGgGR0Bw8Xrt3OfNaAdLqWgIR0C7jMX7YTTOdX2UKGgGR0BwEQw22oegaAdLo2gIR0C7jMbMottidX2UKGgGR0BwjmwzLwF1aAdLvWgIR0C7jOJMDfWMdX2UKGgGR0ByAG2sq8UVaAdLu2gIR0C7jOqGcnVodX2UKGgGR0Bx0oYMvyskaAdLw2gIR0C7jRIuoP07dX2UKGgGR0Bx5VKGtZFHaAdLqmgIR0C7jR2UKRdQdX2UKGgGR0BxYbMMZxaQaAdLoGgIR0C7jR+4gA6udX2UKGgGR0BzfRUtI066aAdLrmgIR0C7jSpKnNxEdX2UKGgGR0Bx5O4J/oaDaAdLnmgIR0C7jSyrDIikdX2UKGgGR0ByuTAzpHI7aAdLu2gIR0C7jTafOD8MdX2UKGgGR0BysG7VawEAaAdLxGgIR0C7jTYJ/oaDdX2UKGgGR0ByzVn27FsIaAdLo2gIR0C7jTsVk+X7dX2UKGgGR0BwEVXlr/KhaAdLnWgIR0C7jUJNwiqydX2UKGgGR0Bw+zYK6WgOaAdLr2gIR0C7jWGHtWuHdX2UKGgGR0BwnkkmhM8HaAdLkmgIR0C7jWUulGgBdX2UKGgGR0B0HMnMMZxaaAdLrWgIR0C7jXo6nzg/dX2UKGgGR0BzyldKNAC5aAdLvWgIR0C7jZfT1CgLdX2UKGgGR0BzSTuw5eZ5aAdLrmgIR0C7jaUAo5PudX2UKGgGR0BzyY7+1jRVaAdL3mgIR0C7jbW9tdiVdX2UKGgGR0BzQPoSteUqaAdLxWgIR0C7jcgyRB/rdX2UKGgGR0BwURa2WpqAaAdLqGgIR0C7jcy4OMESdX2UKGgGR0ByUs+HJtBOaAdLnmgIR0C7jdsUqQRxdX2UKGgGR0BxbaSntOVPaAdLsmgIR0C7jeKj8DSxdX2UKGgGR0Bwabz+WGATaAdLn2gIR0C7jesdT5wgdX2UKGgGR0Bx6YwPAfuDaAdLq2gIR0C7jfNat9x7dX2UKGgGR0BxZ14mkWRBaAdLtmgIR0C7jfLyH2ytdX2UKGgGR0By9CwOe8PGaAdLxGgIR0C7jfenhsIndX2UKGgGR0BxIKj0th/iaAdLtGgIR0C7jfwYpDu0dX2UKGgGR0BwuxydWhh6aAdLlGgIR0C7jgwWzniedX2UKGgGR0BxufuF6AvtaAdLv2gIR0C7jhTg62fDdX2UKGgGR0Bz/ME6kqMFaAdLtGgIR0C7jilLWZqmdX2UKGgGR0ByJT544ZMtaAdLsWgIR0C7jj7yUcGUdX2UKGgGR0BxouC6H0sfaAdLsWgIR0C7jlrx7RfGdX2UKGgGR0BzNJvBJqZdaAdLp2gIR0C7jlxffGdadX2UKGgGR0BzEpsWO6uoaAdLumgIR0C7joEUO/cndX2UKGgGR0BxcoCU5dWyaAdLmmgIR0C7joqZtvXLdX2UKGgGR0BySav+wTufaAdLvGgIR0C7jpwq3EyddX2UKGgGR0ByTA6hg3LnaAdLuWgIR0C7jqiYPXkHdX2UKGgGR0BxGnmcOLBLaAdLrmgIR0C7jq1HOKO1dX2UKGgGR0BzWclY2bXpaAdLq2gIR0C7jrJaaCtjdX2UKGgGR0BxoeixmkFfaAdLqmgIR0C7jrbj1f3OdX2UKGgGR0BzU1b/wRXfaAdLs2gIR0C7jrxS1maqdX2UKGgGR0BxmQvrWy1NaAdLjGgIR0C7jspPqLTAdX2UKGgGR0ByNqtvGZNPaAdLx2gIR0C7jtvEfkmydX2UKGgGR0ByDsQGwA2iaAdL+2gIR0C7juCyY5T7dX2UKGgGR0BzuBA7gbZOaAdLs2gIR0C7juAeJYT1dX2UKGgGR0BxVYWIoE0SaAdLwGgIR0C7juRf8dgfdX2UKGgGR0BvaLDfm9xqaAdLt2gIR0C7jw1SjxkNdX2UKGgGR0BwVu1twaR7aAdLpWgIR0C7jxZVOsT4dX2UKGgGR0BwmIAxSHdoaAdLqWgIR0C7jxmldkaudX2UKGgGR0Bx8QFGG21EaAdLkWgIR0C7jyUtRNypdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0506c5249d5b3c8dbf3002462296e9d5346aa1a920efb4b4cab42cd3628ac347
|
3 |
+
size 146627
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,82 +4,67 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
-
"tensorboard_log":
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": 0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
-
"n_steps": 2048,
|
56 |
-
"gamma": 0.999,
|
57 |
-
"gae_lambda": 0.98,
|
58 |
-
"ent_coef": 0.01,
|
59 |
-
"vf_coef": 0.5,
|
60 |
-
"max_grad_norm": 0.5,
|
61 |
-
"batch_size": 256,
|
62 |
-
"n_epochs": 8,
|
63 |
-
"clip_range": {
|
64 |
-
":type:": "<class 'function'>",
|
65 |
-
":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTEzLTBlNmFiMzM4MjdhYj6UjAg8bGFtYmRhPpRLDUMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
66 |
-
},
|
67 |
-
"clip_range_vf": null,
|
68 |
-
"normalize_advantage": true,
|
69 |
-
"target_kl": null,
|
70 |
"observation_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
-
":serialized:": "
|
73 |
"dtype": "float32",
|
74 |
-
"bounded_below": "[
|
75 |
-
"bounded_above": "[
|
76 |
"_shape": [
|
77 |
8
|
78 |
],
|
79 |
-
"low": "[-
|
80 |
-
"high": "[
|
81 |
-
"low_repr": "-
|
82 |
-
"high_repr": "
|
83 |
"_np_random": null
|
84 |
},
|
85 |
"action_space": {
|
@@ -91,9 +76,24 @@
|
|
91 |
"dtype": "int64",
|
92 |
"_np_random": null
|
93 |
},
|
94 |
-
"n_envs":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9531e4b400>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9531e4b490>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9531e4b520>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9531e4b5b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9531e4b640>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9531e4b6d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9531e4b760>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9531e4b7f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9531e4b880>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9531e4b910>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9531e4b9a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9531e4ba30>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f94d249cc40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 10010624,
|
25 |
+
"_total_timesteps": 10000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1687383684146377815,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrYTD5ILOQ+lZZbvkTUKb8i8ZU+ywCNvgAAAAAAAAAAGpy5vQ+MNj29XrM+PByrvkLeuj0HqYI+AAAAAAAAAABa2UY+dGjNPt2uf76BZRy/soKDPoYAiL4AAAAAAAAAAGZ89bzoJcA/O3JIvkVY6T1E4hw8XUWAvQAAAAAAAAAAs/ozvUPVH7z/t0s+gua6vX7iMTtVlze/AACAPwAAgD/aYVg+2C+sPzv+ET9MQQm/b+vzPmCTrz4AAAAAAAAAAADAb7xoZmU/hetXvaF6e7+3wj69HxsSvQAAAAAAAAAAGukvPXPKkj8SECk+Pmc7v/hnyj1P7wE+AAAAAAAAAACaRhu9W8OaPdDRdz7B2u2+c3hWPF+wOz4AAAAAAAAAAM3807zSIYG71sSWPlcvDr7YcPK8iMCTvwAAgD8AAAAAzSyYO2w/jrsixgA+s7OMPLRLujyIj3C9AACAPwAAgD8zS4o7Tl+fvOuKtbynd1c9pJsDPv5cWDwAAIA/AACAPwBMFDxcK2K6qDaVOLOEfjOaQI06BDmvtwAAgD8AAIA/ej4sPiVBAT9uvD++LOAjv95Bgj47xy2+AAAAAAAAAADaLL09Vd86PrBDtL6nlAa/NCAPvjp1l74AAAAAAAAAACDXBr7xf4o+WpJ5Pt3yJ78F7TO+DhZqPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJQe0TlDF+MAWyUS5CMAXSUR0C7hl6rWAf/dX2UKGgGR0Bx8LTjNpudaAdLt2gIR0C7hmFANXo1dX2UKGgGR0Bw11G7SRbKaAdLnmgIR0C7hnzVH4GmdX2UKGgGR0BxmHsa86FNaAdLk2gIR0C7hoosZpBYdX2UKGgGR0BySL7+DOC5aAdLnGgIR0C7hpic0+C9dX2UKGgGR0BzZBzq8lHCaAdLpmgIR0C7hqgFPi1idX2UKGgGR0BxxaPKdQO4aAdLlGgIR0C7hrGtdRixdX2UKGgGR0BzJdbqyGBXaAdLvGgIR0C7hsGRRuTBdX2UKGgGR0BzN2xt52QoaAdLxGgIR0C7isavicXndX2UKGgGR0BxNh2KVII4aAdLmGgIR0C7isp1zQu3dX2UKGgGR0BzAXF2mpEQaAdLo2gIR0C7is1j3EhrdX2UKGgGR0Bx36NOuaF3aAdLmmgIR0C7itdihFmWdX2UKGgGR0By3W7ulXRxaAdL4GgIR0C7itdF4LThdX2UKGgGR0BxSbNyHVPOaAdLm2gIR0C7iu9mxt52dX2UKGgGR0BxXiFSKm8/aAdLs2gIR0C7iv1dLQHBdX2UKGgGR0BxGFe0G/vfaAdLu2gIR0C7ixfs3Q2NdX2UKGgGR0ByZidVea8ZaAdLtWgIR0C7iyZ9ZzPsdX2UKGgGR0Bwn4ox59mZaAdLoGgIR0C7iynwXqJNdX2UKGgGR0By4uClJpWWaAdLv2gIR0C7izAevIOpdX2UKGgGR0BxRLgR9PUKaAdLtGgIR0C7izeBxxT9dX2UKGgGR0ByKAoXsPataAdLrWgIR0C7i069bor4dX2UKGgGR0Byqt8c+7lJaAdLv2gIR0C7i1V8b70ndX2UKGgGR0ByoMqMFUyYaAdLuGgIR0C7i2WorFwUdX2UKGgGR0BwHXnW8RL9aAdLt2gIR0C7i3WRNh3JdX2UKGgGR0By5JxWDHwPaAdLuGgIR0C7i5ylSCOFdX2UKGgGR0BxrI1EVnEmaAdLtmgIR0C7i6W+CbtrdX2UKGgGR0By6vMkhRqHaAdLymgIR0C7i7FVLi++dX2UKGgGR0BylB1gYxcnaAdL1WgIR0C7i7rkjopydX2UKGgGR0ByGb1dxAB1aAdLsmgIR0C7i762rn1WdX2UKGgGR0By+rA+IMz/aAdLzmgIR0C7i8QY+B6KdX2UKGgGR0BxvcRXfZVXaAdLs2gIR0C7i8z6nBLxdX2UKGgGR0ByGBDgIhQnaAdLnmgIR0C7i+hdMTN/dX2UKGgGR0BxoR0jkdWAaAdLu2gIR0C7i/FbmlqKdX2UKGgGR0BzDJ7NSqEOaAdLwWgIR0C7jAiNKh+OdX2UKGgGR0BwezznRsuWaAdLuWgIR0C7jBCVObiIdX2UKGgGR0BzvziLl3hXaAdLxWgIR0C7jBCM98qndX2UKGgGR0BxxwvduYQbaAdLrWgIR0C7jBsBltj1dX2UKGgGR0BzWFlar3j/aAdLsmgIR0C7jDalLvkSdX2UKGgGR0Bx9PvAoG6gaAdLjGgIR0C7jFp8neBQdX2UKGgGR0ByvEarFOwgaAdL42gIR0C7jF+yu6mPdX2UKGgGR0Bw8M5IYm9haAdLrWgIR0C7jGY7V8TjdX2UKGgGR0BvPZzYEnstaAdLqGgIR0C7jGg75mAcdX2UKGgGR0B0tcD5j6N3aAdL02gIR0C7jG2HHmzTdX2UKGgGR0BzCwpCrtE5aAdLsWgIR0C7jHu7pV0cdX2UKGgGR0BybG8scyWSaAdLr2gIR0C7jIUlqrR0dX2UKGgGR0ByN8EU0vXcaAdLsGgIR0C7jJRaC+URdX2UKGgGR0BzRvJ5mh/RaAdLxWgIR0C7jKJD/lySdX2UKGgGR0B0Dc4aP0ZnaAdLtGgIR0C7jL0kB0ZFdX2UKGgGR0ByqhkkKNQ1aAdLvWgIR0C7jL67VawEdX2UKGgGR0Bw8Xrt3OfNaAdLqWgIR0C7jMX7YTTOdX2UKGgGR0BwEQw22oegaAdLo2gIR0C7jMbMottidX2UKGgGR0BwjmwzLwF1aAdLvWgIR0C7jOJMDfWMdX2UKGgGR0ByAG2sq8UVaAdLu2gIR0C7jOqGcnVodX2UKGgGR0Bx0oYMvyskaAdLw2gIR0C7jRIuoP07dX2UKGgGR0Bx5VKGtZFHaAdLqmgIR0C7jR2UKRdQdX2UKGgGR0BxYbMMZxaQaAdLoGgIR0C7jR+4gA6udX2UKGgGR0BzfRUtI066aAdLrmgIR0C7jSpKnNxEdX2UKGgGR0Bx5O4J/oaDaAdLnmgIR0C7jSyrDIikdX2UKGgGR0ByuTAzpHI7aAdLu2gIR0C7jTafOD8MdX2UKGgGR0BysG7VawEAaAdLxGgIR0C7jTYJ/oaDdX2UKGgGR0ByzVn27FsIaAdLo2gIR0C7jTsVk+X7dX2UKGgGR0BwEVXlr/KhaAdLnWgIR0C7jUJNwiqydX2UKGgGR0Bw+zYK6WgOaAdLr2gIR0C7jWGHtWuHdX2UKGgGR0BwnkkmhM8HaAdLkmgIR0C7jWUulGgBdX2UKGgGR0B0HMnMMZxaaAdLrWgIR0C7jXo6nzg/dX2UKGgGR0BzyldKNAC5aAdLvWgIR0C7jZfT1CgLdX2UKGgGR0BzSTuw5eZ5aAdLrmgIR0C7jaUAo5PudX2UKGgGR0BzyY7+1jRVaAdL3mgIR0C7jbW9tdiVdX2UKGgGR0BzQPoSteUqaAdLxWgIR0C7jcgyRB/rdX2UKGgGR0BwURa2WpqAaAdLqGgIR0C7jcy4OMESdX2UKGgGR0ByUs+HJtBOaAdLnmgIR0C7jdsUqQRxdX2UKGgGR0BxbaSntOVPaAdLsmgIR0C7jeKj8DSxdX2UKGgGR0Bwabz+WGATaAdLn2gIR0C7jesdT5wgdX2UKGgGR0Bx6YwPAfuDaAdLq2gIR0C7jfNat9x7dX2UKGgGR0BxZ14mkWRBaAdLtmgIR0C7jfLyH2ytdX2UKGgGR0By9CwOe8PGaAdLxGgIR0C7jfenhsIndX2UKGgGR0BxIKj0th/iaAdLtGgIR0C7jfwYpDu0dX2UKGgGR0BwuxydWhh6aAdLlGgIR0C7jgwWzniedX2UKGgGR0BxufuF6AvtaAdLv2gIR0C7jhTg62fDdX2UKGgGR0Bz/ME6kqMFaAdLtGgIR0C7jilLWZqmdX2UKGgGR0ByJT544ZMtaAdLsWgIR0C7jj7yUcGUdX2UKGgGR0BxouC6H0sfaAdLsWgIR0C7jlrx7RfGdX2UKGgGR0BzNJvBJqZdaAdLp2gIR0C7jlxffGdadX2UKGgGR0BzEpsWO6uoaAdLumgIR0C7joEUO/cndX2UKGgGR0BxcoCU5dWyaAdLmmgIR0C7joqZtvXLdX2UKGgGR0BySav+wTufaAdLvGgIR0C7jpwq3EyddX2UKGgGR0ByTA6hg3LnaAdLuWgIR0C7jqiYPXkHdX2UKGgGR0BxGnmcOLBLaAdLrmgIR0C7jq1HOKO1dX2UKGgGR0BzWclY2bXpaAdLq2gIR0C7jrJaaCtjdX2UKGgGR0BxoeixmkFfaAdLqmgIR0C7jrbj1f3OdX2UKGgGR0BzU1b/wRXfaAdLs2gIR0C7jrxS1maqdX2UKGgGR0BxmQvrWy1NaAdLjGgIR0C7jspPqLTAdX2UKGgGR0ByNqtvGZNPaAdLx2gIR0C7jtvEfkmydX2UKGgGR0ByDsQGwA2iaAdL+2gIR0C7juCyY5T7dX2UKGgGR0BzuBA7gbZOaAdLs2gIR0C7juAeJYT1dX2UKGgGR0BxVYWIoE0SaAdLwGgIR0C7juRf8dgfdX2UKGgGR0BvaLDfm9xqaAdLt2gIR0C7jw1SjxkNdX2UKGgGR0BwVu1twaR7aAdLpWgIR0C7jxZVOsT4dX2UKGgGR0BwmIAxSHdoaAdLqWgIR0C7jxmldkaudX2UKGgGR0Bx8QFGG21EaAdLkWgIR0C7jyUtRNypdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 2444,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
"_shape": [
|
62 |
8
|
63 |
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
"_np_random": null
|
69 |
},
|
70 |
"action_space": {
|
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9a41498547d9d17b44a951dd3b187956d86b9556fb2b226b234f01ece617ce6
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2c73ed82348c0aae7ed5957e61116c72bade8494a35a81b236823302aa1beef
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 285.47701970891825, "std_reward": 18.94334521992165, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-22T00:59:26.283090"}
|