ztchir commited on
Commit
0e89f19
·
1 Parent(s): 9fcf99f

Upload trained PPO Lunar Lander Agent

Browse files
PPO-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:276db74e4c9c56d221abf4720df1914fa0d2f944d80c4c2076379666d67ffbfa
3
+ size 146695
PPO-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
PPO-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa3e101a310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa3e101a3a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa3e101a430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa3e101a4c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa3e101a550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa3e101a5e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa3e101a670>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa3e101a700>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa3e101a790>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa3e101a820>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa3e101a8b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa3e10166f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673367015164310413,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZVgrwpYHe6GVmxOQn4ETQ+/Lq64i7NuAAAgD8AAIA/zUjzOylQfro6CFsz1LRxL9YHkzozg7qzAACAPwAAgD+aWKi9JF9YPs7V9z0n14C+LkomPDjB7TwAAAAAAAAAAAD/lb0wwLQ/2tAOvwspEr5LEBO9mg6EvgAAAAAAAAAAJqrBPcMKKD8rgwK+GtiEvkRGmLylN5y9AAAAAAAAAAAzPPi8XNNrulsx5zExnoSwauy7OVGMLDIAAIA/AACAPw18uL2Fu/i52thbuwIigDivV/u6VSbtOQAAgD8AAAAAGjDRvUipjLo28S25U20gtBb8KjvGFUo4AACAPwAAAACThCA+k/YLP2xMKr6HqrS+5mQgPAUJWD0AAAAAAAAAANOSjT6W0SE/QlXvvep3sr42fx4+ubSqvQAAAAAAAAAAzX55PKQUY7ubDVi8Ve+VPBv0qzzGWYC9AACAPwAAgD+ALTI9UNibP/rcmz28566+IcC+PUZ5Sj0AAAAAAAAAALPZK73sBBU+IN3iPMYYc75YiY67tkIDPgAAAAAAAAAAM+mLvVohmj8TiTK+ITi9vuxqrrzRzRE9AAAAAAAAAACzCCK+bNmGPuYgNb0ytV++humovVqAtLwAAAAAAAAAAIAsY71S9eq7jnqyPPDm7Dx/3UA9rivDvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyF7v/nhSb0CUhpRSlIwBbJRNWQGMAXSUR0CMMfS88La3dX2UKGgGaAloD0MISPq0iv6lZUCUhpRSlGgVTegDaBZHQIwy28Empl11fZQoaAZoCWgPQwhKCFbVC2xwQJSGlFKUaBVNUQFoFkdAjDNsXJo0ynV9lChoBmgJaA9DCHpW0oqv3XJAlIaUUpRoFU0uAWgWR0CMNJybx3FDdX2UKGgGaAloD0MI3NeBc0bqS0CUhpRSlGgVTRABaBZHQIw1/VVghKV1fZQoaAZoCWgPQwiZZU8Cm7MIQJSGlFKUaBVL+mgWR0CMNxgjQiRodX2UKGgGaAloD0MIibfOv11ub0CUhpRSlGgVTUgBaBZHQIw3p2MbWEt1fZQoaAZoCWgPQwiYiSKkbspxQJSGlFKUaBVNZgFoFkdAjDlIomXw9nV9lChoBmgJaA9DCB3pDIw8BHFAlIaUUpRoFU1CAWgWR0CMOomTkhicdX2UKGgGaAloD0MImWVPApsabUCUhpRSlGgVTTsBaBZHQIw6xOerdWR1fZQoaAZoCWgPQwjHSzeJQeBTQJSGlFKUaBVNFwFoFkdAjDrk6T4cm3V9lChoBmgJaA9DCHv2XKamE3BAlIaUUpRoFU1IAWgWR0CMOw4GUwBYdX2UKGgGaAloD0MI+rmhKbvBbkCUhpRSlGgVTScBaBZHQIw8WRkmQbN1fZQoaAZoCWgPQwhnYyXm2clgQJSGlFKUaBVN6ANoFkdAjD0u5z5oG3V9lChoBmgJaA9DCJCGU+bmxm1AlIaUUpRoFU2hAWgWR0CMPXwjMV1wdX2UKGgGaAloD0MIDhE3p5KtcECUhpRSlGgVTQABaBZHQIw/znLaEjB1fZQoaAZoCWgPQwg4TgrzHpFAQJSGlFKUaBVNBAFoFkdAjEBr0aqCH3V9lChoBmgJaA9DCBhA+FAiHm1AlIaUUpRoFU0XAWgWR0CMRVgCOmzjdX2UKGgGaAloD0MIlYCYhMsuckCUhpRSlGgVTS0BaBZHQIxI5WT5ftx1fZQoaAZoCWgPQwg0EqER7L9tQJSGlFKUaBVNbwFoFkdAjEjsJIDoyXV9lChoBmgJaA9DCBzPZ0A9XGtAlIaUUpRoFU0oAWgWR0CMSnJZGKAKdX2UKGgGaAloD0MIPGpMiDmRcUCUhpRSlGgVTXUBaBZHQIxKufChvit1fZQoaAZoCWgPQwgtJjYfVyNwQJSGlFKUaBVNYwFoFkdAjEwgsK9f1HV9lChoBmgJaA9DCGK9USvMCXFAlIaUUpRoFU00AWgWR0CMTQoZydWidX2UKGgGaAloD0MIYXDNHX2scECUhpRSlGgVTRsBaBZHQIxNTRMN+b51fZQoaAZoCWgPQwjhfVUu1GBxQJSGlFKUaBVNRgFoFkdAjE3HxjJ+2HV9lChoBmgJaA9DCBOZucDlmW5AlIaUUpRoFU3PAWgWR0CMTsGATZg5dX2UKGgGaAloD0MIz7uxoDDYI0CUhpRSlGgVS/hoFkdAjE/D5j6N2nV9lChoBmgJaA9DCK8nui485HFAlIaUUpRoFU1sAWgWR0CMUB+zdDYzdX2UKGgGaAloD0MILZeNzvk3cECUhpRSlGgVTUYBaBZHQIxQrAtWdVh1fZQoaAZoCWgPQwiZDTLJSGFvQJSGlFKUaBVNjAFoFkdAjFHFC1JDmnV9lChoBmgJaA9DCCCcTx0rEWxAlIaUUpRoFU1lAWgWR0CMUkYDTz/ZdX2UKGgGaAloD0MInplgONetcECUhpRSlGgVTV0BaBZHQIxUrFId2gZ1fZQoaAZoCWgPQwiTOgFNhJ0qQJSGlFKUaBVL/GgWR0CMV6VMVUModX2UKGgGaAloD0MIrBxaZPvTckCUhpRSlGgVTUcBaBZHQIxYGOwPiDN1fZQoaAZoCWgPQwg8g4b+iWVxQJSGlFKUaBVL+2gWR0CMWgHhS9/SdX2UKGgGaAloD0MIJo3ROqr3b0CUhpRSlGgVTUYBaBZHQIxbGLWI42l1fZQoaAZoCWgPQwiaJJaUu1lBQJSGlFKUaBVL+GgWR0CMXSPxx1gZdX2UKGgGaAloD0MIhQg4hKpOcUCUhpRSlGgVTWkBaBZHQIxdp1LamGd1fZQoaAZoCWgPQwhY5ULl3y5uQJSGlFKUaBVNQQFoFkdAjF388s+V1XV9lChoBmgJaA9DCNQQVfgzZHFAlIaUUpRoFU0wAWgWR0CMX55dnkDIdX2UKGgGaAloD0MInKbPDviEckCUhpRSlGgVTXYBaBZHQIxgKgGr0at1fZQoaAZoCWgPQwj8NO7N74JxQJSGlFKUaBVNAQFoFkdAjGCjzyz5XXV9lChoBmgJaA9DCGL5822B4nBAlIaUUpRoFU1cAWgWR0CMYNuNPxhEdX2UKGgGaAloD0MIs14M5cQLcUCUhpRSlGgVTWoBaBZHQIxh+GmDUVl1fZQoaAZoCWgPQwjdKLLWUKFtQJSGlFKUaBVNSQFoFkdAjGMd+w1R+HV9lChoBmgJaA9DCJ+RCI1gy25AlIaUUpRoFU1fAWgWR0CMY6Iu5BkadX2UKGgGaAloD0MIN+Dzwwj8bECUhpRSlGgVTTMBaBZHQIxj2m51/2F1fZQoaAZoCWgPQwiVu8/xUcJsQJSGlFKUaBVNSAFoFkdAjGiQyqMm4XV9lChoBmgJaA9DCE7U0tyKgm9AlIaUUpRoFU1LAWgWR0CMbFD9fkWAdX2UKGgGaAloD0MIYmh1cgZGcUCUhpRSlGgVTU8BaBZHQIyA/hIe5nV1fZQoaAZoCWgPQwgK2uTwyR5yQJSGlFKUaBVNIgFoFkdAjIF1yNn5BXV9lChoBmgJaA9DCG77HvVXVHFAlIaUUpRoFU15AWgWR0CMgepc5bQkdX2UKGgGaAloD0MI4ZUkz/VnR0CUhpRSlGgVS+poFkdAjIKV3ljmS3V9lChoBmgJaA9DCD9wlScQx25AlIaUUpRoFU0eAWgWR0CMgzuJDVpcdX2UKGgGaAloD0MIzQLtDikjcECUhpRSlGgVTRsBaBZHQIyDkMgEEDB1fZQoaAZoCWgPQwgVH5+QXTJwQJSGlFKUaBVNWAFoFkdAjISGwA2hqXV9lChoBmgJaA9DCHpQUIpWBXFAlIaUUpRoFU0kAWgWR0CMhNwDvE0jdX2UKGgGaAloD0MIzy7f+nCocECUhpRSlGgVTS0BaBZHQIyFI5q/M4d1fZQoaAZoCWgPQwjkv0AQ4GNwQJSGlFKUaBVNowFoFkdAjIcdUS7GvXV9lChoBmgJaA9DCEzfawgOhHBAlIaUUpRoFU0bAWgWR0CMhztTkyULdX2UKGgGaAloD0MIaRzqdyECcUCUhpRSlGgVTT4BaBZHQIyIeR5kbxV1fZQoaAZoCWgPQwg3+wPl9s5wQJSGlFKUaBVNDAFoFkdAjIqQRf4REnV9lChoBmgJaA9DCLxXrUw46HBAlIaUUpRoFU0xAWgWR0CMkCDOkcjrdX2UKGgGaAloD0MIwVjfwOROcECUhpRSlGgVTQ8BaBZHQIyRft6X0Gx1fZQoaAZoCWgPQwjVz5uKVDBIQJSGlFKUaBVL82gWR0CMkmkt29tedX2UKGgGaAloD0MI4bTgRV+pQkCUhpRSlGgVS/FoFkdAjJKizkZJkHV9lChoBmgJaA9DCK65o//lpEZAlIaUUpRoFU0UAWgWR0CMk5CfHxSYdX2UKGgGaAloD0MI9kTXhd/tcECUhpRSlGgVTTcBaBZHQIyT2GRFI/Z1fZQoaAZoCWgPQwhpUZ/kjjFyQJSGlFKUaBVNMwFoFkdAjJVZVwPy1HV9lChoBmgJaA9DCImyt5RzfnFAlIaUUpRoFU0lAmgWR0CMl6qKgqVhdX2UKGgGaAloD0MItybdlkgbckCUhpRSlGgVTT4BaBZHQIyYNg2Ifr91fZQoaAZoCWgPQwjrVWR0QNZuQJSGlFKUaBVNJQFoFkdAjJjuU+s5n3V9lChoBmgJaA9DCLKbGf1ohXBAlIaUUpRoFU2RAWgWR0CMmWLv1DjSdX2UKGgGaAloD0MIH0dzZCWLcECUhpRSlGgVTTIBaBZHQIybJAlfJFN1fZQoaAZoCWgPQwheZAJ+jaFyQJSGlFKUaBVNTwFoFkdAjJtcRL9MsnV9lChoBmgJaA9DCFkTC3xFIHFAlIaUUpRoFU2iAWgWR0CMm4VII4VAdX2UKGgGaAloD0MI6lxRSggcckCUhpRSlGgVTU0BaBZHQIyewq/dqL11fZQoaAZoCWgPQwi5p6s7FulPQJSGlFKUaBVL7GgWR0CMoE5Lh73PdX2UKGgGaAloD0MIqDY4Ef0iS0CUhpRSlGgVTRMBaBZHQIyir7Ikqtp1fZQoaAZoCWgPQwjONczQeIRxQJSGlFKUaBVNHAFoFkdAjKRe18b70nV9lChoBmgJaA9DCBjMXyHzJm5AlIaUUpRoFU0lAWgWR0CMpLC/GlyjdX2UKGgGaAloD0MI/S5szdZTb0CUhpRSlGgVTVwBaBZHQIylEXWOIZZ1fZQoaAZoCWgPQwhK8fEJWeJwQJSGlFKUaBVNWAFoFkdAjKX5u63AmHV9lChoBmgJaA9DCM8Qjlk2p3FAlIaUUpRoFU1HAWgWR0CMqE912aDxdX2UKGgGaAloD0MIRnpRu58fcECUhpRSlGgVTS8BaBZHQIypCH0se4l1fZQoaAZoCWgPQwg8Ei9PJz5wQJSGlFKUaBVNTAFoFkdAjKt9RJmNBHV9lChoBmgJaA9DCN2ZCYbz/mJAlIaUUpRoFU3oA2gWR0CMrAIBRyfddX2UKGgGaAloD0MI+kLIeX8acECUhpRSlGgVTSkBaBZHQIytBo/Rmbt1fZQoaAZoCWgPQwi8kA4PYQluQJSGlFKUaBVNVAFoFkdAjK1JlrdnCnV9lChoBmgJaA9DCFVpi2t8dmtAlIaUUpRoFU0yAWgWR0CMrW5uIhyKdX2UKGgGaAloD0MIK/htiPG2a0CUhpRSlGgVTV0BaBZHQIyvfCIk7fZ1fZQoaAZoCWgPQwgMzApFujhxQJSGlFKUaBVNFgFoFkdAjLEW2Xsw+XV9lChoBmgJaA9DCEzeADOfznBAlIaUUpRoFU2nAWgWR0CMsW7EHdGidX2UKGgGaAloD0MIycovgzG+bkCUhpRSlGgVTTQBaBZHQIy1d/QSi/R1fZQoaAZoCWgPQwgGLSRgdOhwQJSGlFKUaBVNJQFoFkdAjLZKCQLeAXV9lChoBmgJaA9DCMV1jCuu0nFAlIaUUpRoFU2PAWgWR0CMttMB6rvLdX2UKGgGaAloD0MIrFYm/NIFcECUhpRSlGgVTUoBaBZHQIy6klNUOut1fZQoaAZoCWgPQwiWlLvPMStxQJSGlFKUaBVNYAFoFkdAjLsP420iQnV9lChoBmgJaA9DCN7mjZMCeXBAlIaUUpRoFU0VAWgWR0CMvKbFS88LdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ab7ac14a832dde6087e6a5de6234f11550a6615ca711d51f16787c63e17bfab
3
+ size 87545
PPO-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0195ba58167639e695710cd872e455f21617dc345c7e7082e2761c82f29c147a
3
+ size 43073
PPO-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.82 +/- 13.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa3e101a310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa3e101a3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa3e101a430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa3e101a4c0>", "_build": "<function ActorCriticPolicy._build at 0x7fa3e101a550>", "forward": "<function ActorCriticPolicy.forward at 0x7fa3e101a5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa3e101a670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa3e101a700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa3e101a790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa3e101a820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa3e101a8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa3e10166f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673367015164310413, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZVgrwpYHe6GVmxOQn4ETQ+/Lq64i7NuAAAgD8AAIA/zUjzOylQfro6CFsz1LRxL9YHkzozg7qzAACAPwAAgD+aWKi9JF9YPs7V9z0n14C+LkomPDjB7TwAAAAAAAAAAAD/lb0wwLQ/2tAOvwspEr5LEBO9mg6EvgAAAAAAAAAAJqrBPcMKKD8rgwK+GtiEvkRGmLylN5y9AAAAAAAAAAAzPPi8XNNrulsx5zExnoSwauy7OVGMLDIAAIA/AACAPw18uL2Fu/i52thbuwIigDivV/u6VSbtOQAAgD8AAAAAGjDRvUipjLo28S25U20gtBb8KjvGFUo4AACAPwAAAACThCA+k/YLP2xMKr6HqrS+5mQgPAUJWD0AAAAAAAAAANOSjT6W0SE/QlXvvep3sr42fx4+ubSqvQAAAAAAAAAAzX55PKQUY7ubDVi8Ve+VPBv0qzzGWYC9AACAPwAAgD+ALTI9UNibP/rcmz28566+IcC+PUZ5Sj0AAAAAAAAAALPZK73sBBU+IN3iPMYYc75YiY67tkIDPgAAAAAAAAAAM+mLvVohmj8TiTK+ITi9vuxqrrzRzRE9AAAAAAAAAACzCCK+bNmGPuYgNb0ytV++humovVqAtLwAAAAAAAAAAIAsY71S9eq7jnqyPPDm7Dx/3UA9rivDvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyF7v/nhSb0CUhpRSlIwBbJRNWQGMAXSUR0CMMfS88La3dX2UKGgGaAloD0MISPq0iv6lZUCUhpRSlGgVTegDaBZHQIwy28Empl11fZQoaAZoCWgPQwhKCFbVC2xwQJSGlFKUaBVNUQFoFkdAjDNsXJo0ynV9lChoBmgJaA9DCHpW0oqv3XJAlIaUUpRoFU0uAWgWR0CMNJybx3FDdX2UKGgGaAloD0MI3NeBc0bqS0CUhpRSlGgVTRABaBZHQIw1/VVghKV1fZQoaAZoCWgPQwiZZU8Cm7MIQJSGlFKUaBVL+mgWR0CMNxgjQiRodX2UKGgGaAloD0MIibfOv11ub0CUhpRSlGgVTUgBaBZHQIw3p2MbWEt1fZQoaAZoCWgPQwiYiSKkbspxQJSGlFKUaBVNZgFoFkdAjDlIomXw9nV9lChoBmgJaA9DCB3pDIw8BHFAlIaUUpRoFU1CAWgWR0CMOomTkhicdX2UKGgGaAloD0MImWVPApsabUCUhpRSlGgVTTsBaBZHQIw6xOerdWR1fZQoaAZoCWgPQwjHSzeJQeBTQJSGlFKUaBVNFwFoFkdAjDrk6T4cm3V9lChoBmgJaA9DCHv2XKamE3BAlIaUUpRoFU1IAWgWR0CMOw4GUwBYdX2UKGgGaAloD0MI+rmhKbvBbkCUhpRSlGgVTScBaBZHQIw8WRkmQbN1fZQoaAZoCWgPQwhnYyXm2clgQJSGlFKUaBVN6ANoFkdAjD0u5z5oG3V9lChoBmgJaA9DCJCGU+bmxm1AlIaUUpRoFU2hAWgWR0CMPXwjMV1wdX2UKGgGaAloD0MIDhE3p5KtcECUhpRSlGgVTQABaBZHQIw/znLaEjB1fZQoaAZoCWgPQwg4TgrzHpFAQJSGlFKUaBVNBAFoFkdAjEBr0aqCH3V9lChoBmgJaA9DCBhA+FAiHm1AlIaUUpRoFU0XAWgWR0CMRVgCOmzjdX2UKGgGaAloD0MIlYCYhMsuckCUhpRSlGgVTS0BaBZHQIxI5WT5ftx1fZQoaAZoCWgPQwg0EqER7L9tQJSGlFKUaBVNbwFoFkdAjEjsJIDoyXV9lChoBmgJaA9DCBzPZ0A9XGtAlIaUUpRoFU0oAWgWR0CMSnJZGKAKdX2UKGgGaAloD0MIPGpMiDmRcUCUhpRSlGgVTXUBaBZHQIxKufChvit1fZQoaAZoCWgPQwgtJjYfVyNwQJSGlFKUaBVNYwFoFkdAjEwgsK9f1HV9lChoBmgJaA9DCGK9USvMCXFAlIaUUpRoFU00AWgWR0CMTQoZydWidX2UKGgGaAloD0MIYXDNHX2scECUhpRSlGgVTRsBaBZHQIxNTRMN+b51fZQoaAZoCWgPQwjhfVUu1GBxQJSGlFKUaBVNRgFoFkdAjE3HxjJ+2HV9lChoBmgJaA9DCBOZucDlmW5AlIaUUpRoFU3PAWgWR0CMTsGATZg5dX2UKGgGaAloD0MIz7uxoDDYI0CUhpRSlGgVS/hoFkdAjE/D5j6N2nV9lChoBmgJaA9DCK8nui485HFAlIaUUpRoFU1sAWgWR0CMUB+zdDYzdX2UKGgGaAloD0MILZeNzvk3cECUhpRSlGgVTUYBaBZHQIxQrAtWdVh1fZQoaAZoCWgPQwiZDTLJSGFvQJSGlFKUaBVNjAFoFkdAjFHFC1JDmnV9lChoBmgJaA9DCCCcTx0rEWxAlIaUUpRoFU1lAWgWR0CMUkYDTz/ZdX2UKGgGaAloD0MInplgONetcECUhpRSlGgVTV0BaBZHQIxUrFId2gZ1fZQoaAZoCWgPQwiTOgFNhJ0qQJSGlFKUaBVL/GgWR0CMV6VMVUModX2UKGgGaAloD0MIrBxaZPvTckCUhpRSlGgVTUcBaBZHQIxYGOwPiDN1fZQoaAZoCWgPQwg8g4b+iWVxQJSGlFKUaBVL+2gWR0CMWgHhS9/SdX2UKGgGaAloD0MIJo3ROqr3b0CUhpRSlGgVTUYBaBZHQIxbGLWI42l1fZQoaAZoCWgPQwiaJJaUu1lBQJSGlFKUaBVL+GgWR0CMXSPxx1gZdX2UKGgGaAloD0MIhQg4hKpOcUCUhpRSlGgVTWkBaBZHQIxdp1LamGd1fZQoaAZoCWgPQwhY5ULl3y5uQJSGlFKUaBVNQQFoFkdAjF388s+V1XV9lChoBmgJaA9DCNQQVfgzZHFAlIaUUpRoFU0wAWgWR0CMX55dnkDIdX2UKGgGaAloD0MInKbPDviEckCUhpRSlGgVTXYBaBZHQIxgKgGr0at1fZQoaAZoCWgPQwj8NO7N74JxQJSGlFKUaBVNAQFoFkdAjGCjzyz5XXV9lChoBmgJaA9DCGL5822B4nBAlIaUUpRoFU1cAWgWR0CMYNuNPxhEdX2UKGgGaAloD0MIs14M5cQLcUCUhpRSlGgVTWoBaBZHQIxh+GmDUVl1fZQoaAZoCWgPQwjdKLLWUKFtQJSGlFKUaBVNSQFoFkdAjGMd+w1R+HV9lChoBmgJaA9DCJ+RCI1gy25AlIaUUpRoFU1fAWgWR0CMY6Iu5BkadX2UKGgGaAloD0MIN+Dzwwj8bECUhpRSlGgVTTMBaBZHQIxj2m51/2F1fZQoaAZoCWgPQwiVu8/xUcJsQJSGlFKUaBVNSAFoFkdAjGiQyqMm4XV9lChoBmgJaA9DCE7U0tyKgm9AlIaUUpRoFU1LAWgWR0CMbFD9fkWAdX2UKGgGaAloD0MIYmh1cgZGcUCUhpRSlGgVTU8BaBZHQIyA/hIe5nV1fZQoaAZoCWgPQwgK2uTwyR5yQJSGlFKUaBVNIgFoFkdAjIF1yNn5BXV9lChoBmgJaA9DCG77HvVXVHFAlIaUUpRoFU15AWgWR0CMgepc5bQkdX2UKGgGaAloD0MI4ZUkz/VnR0CUhpRSlGgVS+poFkdAjIKV3ljmS3V9lChoBmgJaA9DCD9wlScQx25AlIaUUpRoFU0eAWgWR0CMgzuJDVpcdX2UKGgGaAloD0MIzQLtDikjcECUhpRSlGgVTRsBaBZHQIyDkMgEEDB1fZQoaAZoCWgPQwgVH5+QXTJwQJSGlFKUaBVNWAFoFkdAjISGwA2hqXV9lChoBmgJaA9DCHpQUIpWBXFAlIaUUpRoFU0kAWgWR0CMhNwDvE0jdX2UKGgGaAloD0MIzy7f+nCocECUhpRSlGgVTS0BaBZHQIyFI5q/M4d1fZQoaAZoCWgPQwjkv0AQ4GNwQJSGlFKUaBVNowFoFkdAjIcdUS7GvXV9lChoBmgJaA9DCEzfawgOhHBAlIaUUpRoFU0bAWgWR0CMhztTkyULdX2UKGgGaAloD0MIaRzqdyECcUCUhpRSlGgVTT4BaBZHQIyIeR5kbxV1fZQoaAZoCWgPQwg3+wPl9s5wQJSGlFKUaBVNDAFoFkdAjIqQRf4REnV9lChoBmgJaA9DCLxXrUw46HBAlIaUUpRoFU0xAWgWR0CMkCDOkcjrdX2UKGgGaAloD0MIwVjfwOROcECUhpRSlGgVTQ8BaBZHQIyRft6X0Gx1fZQoaAZoCWgPQwjVz5uKVDBIQJSGlFKUaBVL82gWR0CMkmkt29tedX2UKGgGaAloD0MI4bTgRV+pQkCUhpRSlGgVS/FoFkdAjJKizkZJkHV9lChoBmgJaA9DCK65o//lpEZAlIaUUpRoFU0UAWgWR0CMk5CfHxSYdX2UKGgGaAloD0MI9kTXhd/tcECUhpRSlGgVTTcBaBZHQIyT2GRFI/Z1fZQoaAZoCWgPQwhpUZ/kjjFyQJSGlFKUaBVNMwFoFkdAjJVZVwPy1HV9lChoBmgJaA9DCImyt5RzfnFAlIaUUpRoFU0lAmgWR0CMl6qKgqVhdX2UKGgGaAloD0MItybdlkgbckCUhpRSlGgVTT4BaBZHQIyYNg2Ifr91fZQoaAZoCWgPQwjrVWR0QNZuQJSGlFKUaBVNJQFoFkdAjJjuU+s5n3V9lChoBmgJaA9DCLKbGf1ohXBAlIaUUpRoFU2RAWgWR0CMmWLv1DjSdX2UKGgGaAloD0MIH0dzZCWLcECUhpRSlGgVTTIBaBZHQIybJAlfJFN1fZQoaAZoCWgPQwheZAJ+jaFyQJSGlFKUaBVNTwFoFkdAjJtcRL9MsnV9lChoBmgJaA9DCFkTC3xFIHFAlIaUUpRoFU2iAWgWR0CMm4VII4VAdX2UKGgGaAloD0MI6lxRSggcckCUhpRSlGgVTU0BaBZHQIyewq/dqL11fZQoaAZoCWgPQwi5p6s7FulPQJSGlFKUaBVL7GgWR0CMoE5Lh73PdX2UKGgGaAloD0MIqDY4Ef0iS0CUhpRSlGgVTRMBaBZHQIyir7Ikqtp1fZQoaAZoCWgPQwjONczQeIRxQJSGlFKUaBVNHAFoFkdAjKRe18b70nV9lChoBmgJaA9DCBjMXyHzJm5AlIaUUpRoFU0lAWgWR0CMpLC/GlyjdX2UKGgGaAloD0MI/S5szdZTb0CUhpRSlGgVTVwBaBZHQIylEXWOIZZ1fZQoaAZoCWgPQwhK8fEJWeJwQJSGlFKUaBVNWAFoFkdAjKX5u63AmHV9lChoBmgJaA9DCM8Qjlk2p3FAlIaUUpRoFU1HAWgWR0CMqE912aDxdX2UKGgGaAloD0MIRnpRu58fcECUhpRSlGgVTS8BaBZHQIypCH0se4l1fZQoaAZoCWgPQwg8Ei9PJz5wQJSGlFKUaBVNTAFoFkdAjKt9RJmNBHV9lChoBmgJaA9DCN2ZCYbz/mJAlIaUUpRoFU3oA2gWR0CMrAIBRyfddX2UKGgGaAloD0MI+kLIeX8acECUhpRSlGgVTSkBaBZHQIytBo/Rmbt1fZQoaAZoCWgPQwi8kA4PYQluQJSGlFKUaBVNVAFoFkdAjK1JlrdnCnV9lChoBmgJaA9DCFVpi2t8dmtAlIaUUpRoFU0yAWgWR0CMrW5uIhyKdX2UKGgGaAloD0MIK/htiPG2a0CUhpRSlGgVTV0BaBZHQIyvfCIk7fZ1fZQoaAZoCWgPQwgMzApFujhxQJSGlFKUaBVNFgFoFkdAjLEW2Xsw+XV9lChoBmgJaA9DCEzeADOfznBAlIaUUpRoFU2nAWgWR0CMsW7EHdGidX2UKGgGaAloD0MIycovgzG+bkCUhpRSlGgVTTQBaBZHQIy1d/QSi/R1fZQoaAZoCWgPQwgGLSRgdOhwQJSGlFKUaBVNJQFoFkdAjLZKCQLeAXV9lChoBmgJaA9DCMV1jCuu0nFAlIaUUpRoFU2PAWgWR0CMttMB6rvLdX2UKGgGaAloD0MIrFYm/NIFcECUhpRSlGgVTUoBaBZHQIy6klNUOut1fZQoaAZoCWgPQwiWlLvPMStxQJSGlFKUaBVNYAFoFkdAjLsP420iQnV9lChoBmgJaA9DCN7mjZMCeXBAlIaUUpRoFU0VAWgWR0CMvKbFS88LdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (248 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.81882661157545, "std_reward": 13.586771150583836, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T16:37:14.786866"}