--- license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: openai/whisper-large-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: es split: test args: es metrics: - name: Wer type: wer value: 5.022549830956459 --- # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2657 - Wer: 5.0225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0869 | 2.0 | 1000 | 0.1754 | 6.1516 | | 0.0913 | 4.0 | 2000 | 0.1652 | 5.7500 | | 0.051 | 6.0 | 3000 | 0.1643 | 5.7757 | | 0.0391 | 8.0 | 4000 | 0.1881 | 5.6589 | | 0.0104 | 10.0 | 5000 | 0.2026 | 5.6211 | | 0.0806 | 12.01 | 6000 | 0.1741 | 5.7398 | | 0.0077 | 14.01 | 7000 | 0.2119 | 5.6038 | | 0.0357 | 16.01 | 8000 | 0.1776 | 5.6147 | | 0.1087 | 18.01 | 9000 | 0.1868 | 5.5172 | | 0.0401 | 20.01 | 10000 | 0.2014 | 5.4428 | | 0.0334 | 22.01 | 11000 | 0.1751 | 5.2824 | | 0.0071 | 24.01 | 12000 | 0.2295 | 5.2490 | | 0.0374 | 26.01 | 13000 | 0.2098 | 5.2574 | | 0.0023 | 28.01 | 14000 | 0.2498 | 5.0418 | | 0.0025 | 30.01 | 15000 | 0.2311 | 4.9385 | | 0.0006 | 32.01 | 16000 | 0.2544 | 4.8949 | | 0.0009 | 34.02 | 17000 | 0.2691 | 5.1246 | | 0.003 | 36.02 | 18000 | 0.2249 | 5.0277 | | 0.0009 | 38.02 | 19000 | 0.2603 | 5.0373 | | 0.0008 | 40.02 | 20000 | 0.2657 | 5.0225 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3