metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- cifar10
model-index:
- name: test-cifar-10
results: []
test-cifar-10
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the cifar10 dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.0831
- eval_accuracy: 0.9802
- eval_runtime: 75.4306
- eval_samples_per_second: 66.286
- eval_steps_per_second: 16.572
- epoch: 1.0
- step: 4500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1