BulgakovLM 3B
A language model trained on Russian. May be suitable for further tuning. The 100 gigabyte dataset consisted primarily of web pages, books, poems, and prose. The model was trained over 2 epochs.
Uses GPT-J architecture with a context window of 4k tokens.
Trained thanks to a TRC grant on TPU-VM v3-8
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("0x7o/BulgakovLM-3B")
model = AutoModelForCausalLM.from_pretrained("0x7o/BulgakovLM-3B")
input_ids = tokenizer("Искусственный интеллект - это", return_tensors='pt').to(model.device)["input_ids"]
output = model.generate(input_ids, max_new_tokens=48, do_sample=True, temperature=0.7)
print(tokenizer.decode(output[0]))
Output:
Искусственный интеллект - это всего-навсего программа, которая анализирует данные и решает, насколько тот или иной выбор может оказаться оптимальным. Как и во всех остальных сферах человеческой деятельности, в IT есть свои плюсы и минусы. И если в прошлом веке искусственный интеллект был чем
Evaluation
The results are obtained through the Russian-language benchmark MERA
Total score: 0.198
Задача | Результат | Метрика |
---|---|---|
BPS | 0.44 | Accuracy |
LCS | 0.118 | Accuracy |
RCB | 0.333 / 0.167 | Avg. F1 / Accuracy |
USE | 0 | Grade Norm |
RWSD | 0.523 | Accuracy |
PARus | 0.498 | Accuracy |
ruTiE | 0.5 | Accuracy |
MultiQ | 0.059 / 0.007 | F1-score/EM |
ruMMLU | 0.25 | Accuracy |
CheGeKa | 0.006 / 0 | F1 / EM |
ruModAr | 0.001 | Accuracy |
SimpleAr | 0.001 | Accuracy |
ruMultiAr | 0.011 | Accuracy |
MathLogicQA | 0.245 | Accuracy |
ruHumanEval | 0 / 0 / 0 | pass@k |
ruWorldTree | 0.265 / 0.246 | Avg. F1 / Accuracy |
ruOpenBookQA | 0.24 / 0.221 | Avg. F1 / Accuracy |
- Downloads last month
- 717
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.