metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results: []
datasets:
- dair-ai/emotion
distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of distilbert-base-uncased on the emotions dataset. It achieves the following results on the evaluation set:
- Loss: 0.2170
- Accuracy: 0.926
- F1: 0.9261
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.8047 | 1.0 | 250 | 0.3131 | 0.908 | 0.9073 |
0.2397 | 2.0 | 500 | 0.2170 | 0.926 | 0.9261 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1