|
--- |
|
language: |
|
- tt |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Tiny Tatar - Kirill Milintsevich |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_11_0 tt |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: tt |
|
split: test |
|
args: tt |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 49.228482446206115 |
|
--- |
|
|
|
# Whisper Tiny Tatar - Kirill Milintsevich |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5106 |
|
- Wer: 49.2285 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
### Training results |
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:| |
|
| 0.4268 | 2.49 | 500 | 0.6232 | 63.6537 | |
|
| 0.2331 | 4.98 | 1000 | 0.5044 | 52.3818 | |
|
| 0.1332 | 7.46 | 1500 | 0.4927 | 50.2300 | |
|
| 0.09 | 9.95 | 2000 | 0.5106 | 49.2285 | |
|
| 0.048 | 12.44 | 2500 | 0.5526 | 49.7806 | |
|
| 0.0346 | 14.93 | 3000 | 0.5850 | 50.0319 | |
|
| 0.0181 | 17.41 | 3500 | 0.6276 | 50.5592 | |
|
| 0.0122 | 19.9 | 4000 | 0.6494 | 50.3327 | |
|
| 0.0086 | 22.39 | 4500 | 0.6737 | 50.6688 | |
|
| 0.0077 | 24.88 | 5000 | 0.6777 | 50.6724 | |