getting started with RL
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +19 -19
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 264.50 +/- 15.24
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b705fcb8ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b705fcb8d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b705fcb8dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b705fcb8e50>", "_build": "<function ActorCriticPolicy._build at 0x7b705fcb8ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7b705fcb8f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b705fcb9000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b705fcb9090>", "_predict": "<function ActorCriticPolicy._predict at 0x7b705fcb9120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b705fcb91b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b705fcb9240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b705fcb92d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b705fe4f180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709660301484065165, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABZnjT78wIE+GOvWvRSQmb7CMqk9Qv9WvQAAAAAAAAAAposDPnEvbrtj9nE6fOoKuIG827xYaKK5AAAAAAAAgD+zchm+j90yvO4+MDsReEQ5mXecPfBybroAAIA/AACAP9oIS76PYyk+MhXjPXufg74dpYg7d3asPAAAAAAAAAAAQEfEPUj5irpg1cA7eyvfN96tGztdu/41AAAAAAAAgD/zcKq9XtO5Php8uzpSPsS+Xq01vUKbiDwAAAAAAAAAAE0gBr5TKgQ/KJVuPTYM2L7pYyu9OzXdPAAAAAAAAAAA7eAtPuxApzwg/dQ4/OKbNyBDMT6VDiG4AACAPwAAgD9TIE0+4dSUur6QAr0tIFk7oRzHPiZQE70AAIA/AACAP5odnryjARc9htCGPf8UM74Iqwo9JhSAvQAAAAAAAAAAzSrRPRQ0nbriVI02LPSBMSpBV7n0QKa1AAAAAAAAgD9aLck9SFmRur9ZjTrxhXo1HvsYu6zuo7kAAAAAAACAPzqKOr5Z2HU+4O/MPVIea74WrGW9g67+OwAAAAAAAAAADYcBPu9Imz92uBc/SyQrv4rVDD7Ykp0+AAAAAAAAAADNnnY9HQxqPuF/szyc+Ia+wsHDPM3pPb0AAAAAAAAAAJowPr7sbN27gGm+OYrvSTdguFI9Et3kuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFZWBSUC7uMAWyUS/6MAXSUR0CiEqb7bcoIdX2UKGgGR0Bzw6jBVMmGaAdNBwFoCEdAohMGPmxMWXV9lChoBkdAcR4wob4rSWgHS9VoCEdAokl+bXpW3nV9lChoBkdAcVJavicXnGgHTR0BaAhHQKJJvrvb48F1fZQoaAZHQHEyaL876pJoB0vYaAhHQKJKZQfIS151fZQoaAZHQHHAFenhsIpoB0vAaAhHQKJKt4k/r0J1fZQoaAZHQG3D6fapPyloB00dAWgIR0CiStSrxRVIdX2UKGgGR0BkHbeIl+mWaAdN6ANoCEdAoks5X2dupHV9lChoBkdAcwqVVghKUWgHTQIBaAhHQKJLOg4ffXR1fZQoaAZHQHJuYIKMNttoB00KAWgIR0CiTGrWAf+1dX2UKGgGR0BwGkJv5xioaAdNIANoCEdAok0cGVzIWHV9lChoBkdAX8QfgaWHDmgHTegDaAhHQKJNsR+SbH91fZQoaAZHQF9RRv3rUspoB03oA2gIR0CiTd5LRKHxdX2UKGgGR0BBgR9G7SRbaAdLuGgIR0CiTq6+N96UdX2UKGgGR0Bk3Vtl7MPjaAdN6ANoCEdAolBEh5gPVnV9lChoBkdAcMGaIeo1k2gHS/FoCEdAolBwpjMFEHV9lChoBkdAcqDR51Ng0GgHS+1oCEdAolDMNBnjAHV9lChoBkdAcPsHrhR64WgHS91oCEdAolEf9vS+g3V9lChoBkdAY60eT3Zf2WgHTegDaAhHQKJRPXnyNGV1fZQoaAZHQHCfla8pTddoB0v0aAhHQKJRQPT5O8F1fZQoaAZHQHEI3kkrwvxoB0v6aAhHQKJRoagmJFd1fZQoaAZHQHABWhmGucNoB0vlaAhHQKJR4zNUwSJ1fZQoaAZHQHHoma2F36hoB0vDaAhHQKJSIcslLOB1fZQoaAZHQHES2QfZElVoB0vfaAhHQKJSKGrS3LF1fZQoaAZHQGVUSJCSidtoB03oA2gIR0CiUjVtoBaLdX2UKGgGR0Bv94IldC3PaAdL7mgIR0CiUqtl7MPjdX2UKGgGR0Bv28R+SbH7aAdL1GgIR0CiU9AJswcpdX2UKGgGR0BwF4D/2kBTaAdL22gIR0CiVCEGRmsedX2UKGgGR0Bu0RjQRf4RaAdLz2gIR0CiVKMCT2WZdX2UKGgGR0Bxn5cqvvBraAdL5GgIR0CiVLOctoSMdX2UKGgGR0Bw3I2fkFOgaAdLy2gIR0CiVR68Hv+gdX2UKGgGR0BwTdzKcNH6aAdL9GgIR0CiVXLtNSIhdX2UKGgGR0BwtBic5Ke1aAdL2GgIR0CiVaW3jMmndX2UKGgGR0By5UWcjJMhaAdNAwFoCEdAolW2Fxn3+XV9lChoBkdAYvRyPuG9H2gHTegDaAhHQKJVu3IdU851fZQoaAZHQHI6nb/Ot4loB0vTaAhHQKJV2DMeOn51fZQoaAZHQG+ysUh3aBZoB0vkaAhHQKJWEyzHCGh1fZQoaAZHQHKfVOsT37FoB0vmaAhHQKJWsUpNKyx1fZQoaAZHQHG3pwbVBldoB0vLaAhHQKJXXTaTOgR1fZQoaAZHQHE2tPci4axoB0v1aAhHQKJYaPqcEvF1fZQoaAZHQHFuECmuTzNoB0viaAhHQKJYjmcvugJ1fZQoaAZHQGKXOVgQYk5oB03oA2gIR0CiWWIkJKJ3dX2UKGgGR0BxTZQqI7/5aAdL6WgIR0CiWYZv99+gdX2UKGgGR0Bs2vqX4TK1aAdL9mgIR0CiWfLiVB2PdX2UKGgGR0BuHYxrSE13aAdL8WgIR0CiWg6mGdqddX2UKGgGR0BybE1yeZogaAdL/GgIR0CiWijKgZjydX2UKGgGR0BzMdON5t3waAdNCwFoCEdAolpiw0O3D3V9lChoBkdAcd+dhRZU1mgHTRMBaAhHQKJa7NZeRgZ1fZQoaAZHQHFiywr1/UhoB00JAWgIR0CiW2v8IiTudX2UKGgGR0Bv2/D7655JaAdL7GgIR0CiW8jGLk0adX2UKGgGR0Bw61wxWT5gaAdLy2gIR0CiXOsqSX+mdX2UKGgGR0BxafIU8FINaAdLzGgIR0CiYFU+s5n2dX2UKGgGR0Bwu7yc0+C9aAdL7WgIR0CiYK1bqyGBdX2UKGgGR0BwcCvmozeoaAdL1WgIR0CiYMm5+YtydX2UKGgGR0Bw1QaisXBQaAdLw2gIR0CiYNdvjwQUdX2UKGgGR0ByZGBun/DMaAdL52gIR0CiYdlvAGjcdX2UKGgGR0Bw/pG+bmU4aAdNFgFoCEdAomIYR7JGOXV9lChoBkdAZIhGLDQ7cWgHTegDaAhHQKJibFBIFvB1fZQoaAZHQHIjx4hUzbhoB0vjaAhHQKJjGYrJ8v51fZQoaAZHQHJ/vMr3CbdoB0vQaAhHQKJjiFCb+cZ1fZQoaAZHQG77vgFX7tRoB0vfaAhHQKJjkkjX4CZ1fZQoaAZHQHBUvci4axZoB0vhaAhHQKJklZOBUaR1fZQoaAZHQGR+uLiuMddoB03oA2gIR0CiZYvomoitdX2UKGgGR0Bx71tj0+TvaAdL5GgIR0CiZrj7qIJrdX2UKGgGR0BxsjU3GXHBaAdL62gIR0CiZ2e85CF9dX2UKGgGR0BuvY5eZ5RkaAdL2GgIR0CiZ4cHWz4UdX2UKGgGR0Bxvx/+bVjJaAdL2GgIR0CiaB9gv115dX2UKGgGR0Byo96Uqx1QaAdL+GgIR0CiaEA7gbZOdX2UKGgGR0BwPBqmCROlaAdL2WgIR0CiaGx77bcodX2UKGgGR0BuxdP8AJb/aAdL3GgIR0CiaWbSZ0CBdX2UKGgGR0BnsV+XqqwRaAdN6ANoCEdAomqBqZc9n3V9lChoBkdAcTsEDyOJcmgHTQkBaAhHQKJqylZX+2p1fZQoaAZHQHEiV14gRsdoB0vaaAhHQKJrkNZNfw91fZQoaAZHQHBrLMgU1yhoB0vtaAhHQKJtCSIP9UF1fZQoaAZHQHIThcVxjrloB0vSaAhHQKJtB5WRzRx1fZQoaAZHQG/DeSKWLP5oB0vpaAhHQKJtghM8HOd1fZQoaAZHQHBRTwYtQKtoB0vnaAhHQKJtuznied11fZQoaAZHQHHluFL39JloB0vtaAhHQKJtyM7U5Ml1fZQoaAZHQGBUKJdjXnRoB03oA2gIR0CibdYBmwqzdX2UKGgGR0Bio5mwqy4XaAdN6ANoCEdAom5G4/eLvXV9lChoBkdAcP0+x4Y772gHS+toCEdAom5+21D0DnV9lChoBkdAcPYoG6f8M2gHS8JoCEdAom69dJJ5FHV9lChoBkdAcAmEP1+RYGgHTWMBaAhHQKJwJPv8ZUF1fZQoaAZHQHJ8SUX531VoB00EAWgIR0CicQOmrKeTdX2UKGgGR0BwCDzH0btJaAdL1GgIR0CicVoiTt9hdX2UKGgGR0Bwn+Xw9aEBaAdL0GgIR0CicavbXYlIdX2UKGgGR0BwGbnuAqd6aAdLyWgIR0CicbrQHAymdX2UKGgGR0BkFwrz5GjLaAdN6ANoCEdAonIjMJQcgnV9lChoBkdAcqlo60Y0mGgHS9toCEdAonKahBZ6lnV9lChoBkdAcfCNNJvo/2gHTQ4BaAhHQKJzHnmJWNp1fZQoaAZHQHCzc10knkVoB0vgaAhHQKJzMHoHLRt1fZQoaAZHQHLQeKjzqbBoB00qAWgIR0CidGMibDuSdX2UKGgGR0ByaSIcinpCaAdNXAFoCEdAonSvhVENOXV9lChoBkdAcG4Z8KG+K2gHS99oCEdAonV6WiUPhHV9lChoBkdAcAAkjX4CZGgHS8RoCEdAonWFANXo1XV9lChoBkdAb5yFxGUfP2gHS8toCEdAonW4/JNj9XV9lChoBkdAcMctEG7jDWgHTRoBaAhHQKJ1yAGSpzd1fZQoaAZHQHEMrbg0j1RoB0vIaAhHQKJ2BBUrCnB1fZQoaAZHQHBhirHU+cJoB0v2aAhHQKJ2KGbCrLh1fZQoaAZHQG/h7FsHjZNoB0vYaAhHQKJ3Ox46fap1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x799ff3c456c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x799ff3c45750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x799ff3c457e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x799ff3c45870>", "_build": "<function ActorCriticPolicy._build at 0x799ff3c45900>", "forward": "<function ActorCriticPolicy.forward at 0x799ff3c45990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x799ff3c45a20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x799ff3c45ab0>", "_predict": "<function ActorCriticPolicy._predict at 0x799ff3c45b40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x799ff3c45bd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x799ff3c45c60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x799ff3c45cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x799ff3be3fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709666776461884989, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpNEzzsf4A8sk3jve8V7r24bJu9sjM+PQAAAAAAAAAA2orOPdanKT1Yjfa9TvoQvoeDgb00p5w9AAAAAAAAAAB6HDq+foBdPyE+g77M2xO/nHCovsIfkL0AAAAAAAAAALOhQz0UXIe6gurls1VXhq+14T26KmOXMwAAgD8AAIA/wDUvPrsxobwLJAo7EORquUwlDb61mTq6AACAPwAAgD+AZHK9LLUAPi6svz3QK8y+1HJmPMqq/j0AAAAAAAAAAI2FMT6kkC4+6MW8vvu8Mb7cyBC99rtKvgAAAAAAAAAArcMzvvTdgrz9WaW7vdQRum3L5T1jQfI6AACAPwAAgD/NSWW+otSDPkN5Nj7nuZm+RCAmvNZqW70AAAAAAAAAAKZJHr4nL/0+A6orPn1lD79l3Zi+YDgAPgAAAAAAAAAAGp02vb2Hsz86wRu/POEGvvkXgTxVw6G9AAAAAAAAAABmYFw8Ui3puwLAST32ajQ8UnVGvfVKGz0AAIA/AACAP+3AML4L5do9EmLMPoc5w76nevA9Yqh3PQAAAAAAAAAATe0/vXqnnj9jVLK+QAhIv8Hl3rwCCFK+AAAAAAAAAAD9lIA+MIqVPlbeN72f01S+jlCzPXlcBL0AAAAAAAAAAHMzpz1bvMg9O5U8vS3bRL4kbaa8daVZOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIbNShrWRSMAWyUTVQBjAF0lEdAsxoDHHWBjHV9lChoBkdAcFtM6zVtoGgHS8BoCEdAsxoUZDRc/3V9lChoBkdAckkslLOAy2gHS+9oCEdAsxoUwxnFpHV9lChoBkdARFiPp6hQFmgHS3poCEdAsxob9VFQVXV9lChoBkdAcRGaePJaJWgHS6loCEdAsxowrK/203V9lChoBkdAcVYNzbN8mmgHS8loCEdAsxpGlSCOFXV9lChoBkdAcc87BO58SmgHS8BoCEdAsxpQakyk9HV9lChoBkdAczI6sySFG2gHTQIBaAhHQLMabf+0gKZ1fZQoaAZHQHAzdy925hBoB0uqaAhHQLMajtapxWF1fZQoaAZHQHFQC4axX4loB0vQaAhHQLMbCCAc1fp1fZQoaAZHQHLv+uJUHY9oB0vzaAhHQLMbCbh3qzJ1fZQoaAZHQHLE4JiRW91oB00FAWgIR0CzGw3CO3lTdX2UKGgGR0Bi45yjpLVXaAdN6ANoCEdAsxsXdEb5unV9lChoBkdAcMAxOtW+5GgHS9RoCEdAsxtC/yoXK3V9lChoBkdAcImQPZqVQmgHS7xoCEdAsxtfGACnxnV9lChoBkdAbhLImPYFq2gHS6toCEdAsxt3p6hQFnV9lChoBkdAcULOZ9d/rmgHS9JoCEdAsxuSUkfLcXV9lChoBkdAceVn9ehPCWgHS8ZoCEdAsxuUT0xubnV9lChoBkdActbkleF+NWgHS/toCEdAsxvWcJ+lTHV9lChoBkdAcvbQRf4REmgHS/NoCEdAsxvY9nscAHV9lChoBkdAc59UJOWSlmgHS95oCEdAsxv4Muvll3V9lChoBkdAcqOmseXAumgHS+hoCEdAsxw0czZYgnV9lChoBkdAc0K/n4fwJGgHS/FoCEdAsxx5drwfAHV9lChoBkdAcC+Lf1pTM2gHS8toCEdAsxy4DKYAsHV9lChoBkdAcVQ8qWkadmgHS7poCEdAsxznw4KhMHV9lChoBkdAciPKJEYwZmgHS+xoCEdAsx0YC2c8T3V9lChoBkdAcOvPFvQ4TGgHS/hoCEdAsx1LAM2FWXV9lChoBkdAcQGu3MINVmgHS8xoCEdAsx1NsHjZMHV9lChoBkdAcMBgFotcwGgHS69oCEdAsx2XHCGetnV9lChoBkdAcL3+glF+eGgHS69oCEdAsx2Z5yEL6XV9lChoBkdAceaYEnssx2gHS6hoCEdAsx2u5hBqsXV9lChoBkdAbn0y5Zr57GgHS+FoCEdAsx2u5rgwXnV9lChoBkdAcYFXI2fkFWgHS9xoCEdAsx3LzGxUvXV9lChoBkdAcbzGvfTCtWgHS+1oCEdAsx316nivPnV9lChoBkdAcM3dpZfUnWgHS8loCEdAsx4s30f5lHV9lChoBkdAcrrJTl1bJWgHS7RoCEdAsx47FId2gXV9lChoBkdAbd5+BpYcN2gHS+VoCEdAsx7tjpcHGHV9lChoBkdAcwkDvVmSQ2gHS9toCEdAsx79rO7g9HV9lChoBkdAcZFqoZQ53mgHS7RoCEdAsx8IIsyzonV9lChoBkdAcCGVjZtelmgHS8VoCEdAsx8pW6shgXV9lChoBkdAcO456dDpkmgHTRkBaAhHQLMfMjZteld1fZQoaAZHQHLNnOryUcJoB0vpaAhHQLMfPEFGG211fZQoaAZHQHLtMiSq2jRoB0vSaAhHQLMfUB1cMVl1fZQoaAZHQHIR/qX4TK1oB0vTaAhHQLMfUk690zV1fZQoaAZHQHL4pKjBVMpoB0vYaAhHQLMfaeE7GNt1fZQoaAZHQHJzYWk8A7xoB0vYaAhHQLMfhjqv/zd1fZQoaAZHQG7KRri2lVNoB0u7aAhHQLMfjQoCuEF1fZQoaAZHQHJ6B06o2n9oB00CAWgIR0CzIBnivPkadX2UKGgGR0BPrnmzSkTIaAdLdGgIR0CzIB4Q4CIUdX2UKGgGR0A5X/8VHnU2aAdLfmgIR0CzIDCc9W6tdX2UKGgGR0BwzhGCqZMMaAdLr2gIR0CzIGdrO7g9dX2UKGgGR0BwayvdM0xeaAdLtWgIR0CzIH4bjtG/dX2UKGgGR0ByRnIcR15jaAdL5mgIR0CzIJ+X3QD3dX2UKGgGR0BwRVN1yNn5aAdLrmgIR0CzIKdO/L1VdX2UKGgGR0ByTWq+8Gs4aAdL6WgIR0CzILEh3aBadX2UKGgGR0BySTSApazNaAdL4WgIR0CzIL4d2gWadX2UKGgGR0By3E+4b0e2aAdLs2gIR0CzIMxAv+OwdX2UKGgGR0ByDt3fQ8fWaAdLtmgIR0CzINcl1KXfdX2UKGgGR0BFfNwR5C4SaAdLYGgIR0CzISmHk92YdX2UKGgGR0Bw447wKBuoaAdLtGgIR0CzIWJFw1iwdX2UKGgGR0BkcOAoXsPbaAdN6ANoCEdAsyGHskY4yXV9lChoBkdAbmhARkEs8WgHS8FoCEdAsyGTGHYYi3V9lChoBkdAca3qDbrTpmgHS9FoCEdAsyGax3V093V9lChoBkdAZwmCp3os7WgHTegDaAhHQLMhrBC2MKl1fZQoaAZHQHKbDifg75poB0uvaAhHQLMhrjN6gNB1fZQoaAZHQG/MvTG5tnBoB0uwaAhHQLMh5IsRQJp1fZQoaAZHQHBzwxJul41oB0vAaAhHQLMh/ktEofF1fZQoaAZHQG/q4x1xKg9oB0uqaAhHQLMiAlJYkmh1fZQoaAZHQHHr4tpVS4xoB0viaAhHQLMiSRxcVxl1fZQoaAZHQG3mbhNucc5oB0vQaAhHQLMiUO3lS0l1fZQoaAZHQHLCJ2pyZKFoB0v3aAhHQLMifoxHoX91fZQoaAZHQHF1xllK9PFoB0ueaAhHQLMihEwnH/91fZQoaAZHQHKWQxesxPBoB0veaAhHQLMixES/TLJ1fZQoaAZHQGVy1CHARChoB03oA2gIR0CzItj6JqIrdX2UKGgGR0Bx4xfVqesgaAdLy2gIR0CzIw4FA3UAdX2UKGgGR0BxPKMYMvytaAdL0WgIR0CzIykYGdI5dX2UKGgGR0BxyHvlU6xPaAdL9GgIR0CzI1GKZUkwdX2UKGgGR0Bw6rI1cdHUaAdL/GgIR0CzI1QSWZ7YdX2UKGgGR0Bz2P4WUKRdaAdL92gIR0CzI3I/qxC6dX2UKGgGR0Byg1zySV4YaAdL32gIR0CzI37ns9jgdX2UKGgGR0BxwmtCAtnPaAdL5GgIR0CzI55k078vdX2UKGgGR0ByAYnogV45aAdL1mgIR0CzI9XSOR1YdX2UKGgGR0BwwB+Zw4sFaAdLv2gIR0CzI+KXKKYRdX2UKGgGR0Bu3vgiu+yraAdL2mgIR0CzI+dVmz0IdX2UKGgGR0By7mrmyPdVaAdLvmgIR0CzI+bDEWIodX2UKGgGR0Bw5gWRA8jiaAdLo2gIR0CzI/GCVbA2dX2UKGgGR0Bzy+Lm6oVEaAdLzGgIR0CzJE1uFYdRdX2UKGgGR0BxY9cB2fTTaAdLjmgIR0CzJFUnkT6BdX2UKGgGR0BQGanBLwnZaAdLZGgIR0CzJJZrgwXZdX2UKGgGR0BkVpAyEcsEaAdN6ANoCEdAsySzmbLEDXV9lChoBkdAc99n7YTTOWgHS+5oCEdAsyTGvX9R8HV9lChoBkdAcCIhOgxrSGgHS7FoCEdAsyTHpFCswXV9lChoBkdAcUu0NSZSemgHS6RoCEdAsyTQ9IPK+3V9lChoBkdAcV1rLhaTwGgHS9VoCEdAsyTdYFJQL3V9lChoBkdAcQkqqOtGNWgHS/JoCEdAsyTmu4gA63V9lChoBkdAcAkQnx8UmGgHS9NoCEdAsyT3Q8fV7XV9lChoBkdAcNHaL4vexmgHS75oCEdAsyU9ZvDP4XV9lChoBkdAcS6U7CBPK2gHS9doCEdAsyVtMYdhiXV9lChoBkdAcmiS4e9zwWgHS/xoCEdAsyWkCPp6hXV9lChoBkdAcnABFNL13GgHS75oCEdAsyWwK1G9YnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:787b8dae46f82592731ee3d6c29aeff36bf1486bd99bd15a98e56c8173034e52
|
3 |
+
size 147966
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,13 +45,13 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -94,6 +94,6 @@
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x799ff3c456c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x799ff3c45750>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x799ff3c457e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x799ff3c45870>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x799ff3c45900>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x799ff3c45990>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x799ff3c45a20>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x799ff3c45ab0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x799ff3c45b40>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x799ff3c45bd0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x799ff3c45c60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x799ff3c45cf0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x799ff3be3fc0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1709666776461884989,
|
30 |
+
"learning_rate": 0.001,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpNEzzsf4A8sk3jve8V7r24bJu9sjM+PQAAAAAAAAAA2orOPdanKT1Yjfa9TvoQvoeDgb00p5w9AAAAAAAAAAB6HDq+foBdPyE+g77M2xO/nHCovsIfkL0AAAAAAAAAALOhQz0UXIe6gurls1VXhq+14T26KmOXMwAAgD8AAIA/wDUvPrsxobwLJAo7EORquUwlDb61mTq6AACAPwAAgD+AZHK9LLUAPi6svz3QK8y+1HJmPMqq/j0AAAAAAAAAAI2FMT6kkC4+6MW8vvu8Mb7cyBC99rtKvgAAAAAAAAAArcMzvvTdgrz9WaW7vdQRum3L5T1jQfI6AACAPwAAgD/NSWW+otSDPkN5Nj7nuZm+RCAmvNZqW70AAAAAAAAAAKZJHr4nL/0+A6orPn1lD79l3Zi+YDgAPgAAAAAAAAAAGp02vb2Hsz86wRu/POEGvvkXgTxVw6G9AAAAAAAAAABmYFw8Ui3puwLAST32ajQ8UnVGvfVKGz0AAIA/AACAP+3AML4L5do9EmLMPoc5w76nevA9Yqh3PQAAAAAAAAAATe0/vXqnnj9jVLK+QAhIv8Hl3rwCCFK+AAAAAAAAAAD9lIA+MIqVPlbeN72f01S+jlCzPXlcBL0AAAAAAAAAAHMzpz1bvMg9O5U8vS3bRL4kbaa8daVZOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIbNShrWRSMAWyUTVQBjAF0lEdAsxoDHHWBjHV9lChoBkdAcFtM6zVtoGgHS8BoCEdAsxoUZDRc/3V9lChoBkdAckkslLOAy2gHS+9oCEdAsxoUwxnFpHV9lChoBkdARFiPp6hQFmgHS3poCEdAsxob9VFQVXV9lChoBkdAcRGaePJaJWgHS6loCEdAsxowrK/203V9lChoBkdAcVYNzbN8mmgHS8loCEdAsxpGlSCOFXV9lChoBkdAcc87BO58SmgHS8BoCEdAsxpQakyk9HV9lChoBkdAczI6sySFG2gHTQIBaAhHQLMabf+0gKZ1fZQoaAZHQHAzdy925hBoB0uqaAhHQLMajtapxWF1fZQoaAZHQHFQC4axX4loB0vQaAhHQLMbCCAc1fp1fZQoaAZHQHLv+uJUHY9oB0vzaAhHQLMbCbh3qzJ1fZQoaAZHQHLE4JiRW91oB00FAWgIR0CzGw3CO3lTdX2UKGgGR0Bi45yjpLVXaAdN6ANoCEdAsxsXdEb5unV9lChoBkdAcMAxOtW+5GgHS9RoCEdAsxtC/yoXK3V9lChoBkdAcImQPZqVQmgHS7xoCEdAsxtfGACnxnV9lChoBkdAbhLImPYFq2gHS6toCEdAsxt3p6hQFnV9lChoBkdAcULOZ9d/rmgHS9JoCEdAsxuSUkfLcXV9lChoBkdAceVn9ehPCWgHS8ZoCEdAsxuUT0xubnV9lChoBkdActbkleF+NWgHS/toCEdAsxvWcJ+lTHV9lChoBkdAcvbQRf4REmgHS/NoCEdAsxvY9nscAHV9lChoBkdAc59UJOWSlmgHS95oCEdAsxv4Muvll3V9lChoBkdAcqOmseXAumgHS+hoCEdAsxw0czZYgnV9lChoBkdAc0K/n4fwJGgHS/FoCEdAsxx5drwfAHV9lChoBkdAcC+Lf1pTM2gHS8toCEdAsxy4DKYAsHV9lChoBkdAcVQ8qWkadmgHS7poCEdAsxznw4KhMHV9lChoBkdAciPKJEYwZmgHS+xoCEdAsx0YC2c8T3V9lChoBkdAcOvPFvQ4TGgHS/hoCEdAsx1LAM2FWXV9lChoBkdAcQGu3MINVmgHS8xoCEdAsx1NsHjZMHV9lChoBkdAcMBgFotcwGgHS69oCEdAsx2XHCGetnV9lChoBkdAcL3+glF+eGgHS69oCEdAsx2Z5yEL6XV9lChoBkdAceaYEnssx2gHS6hoCEdAsx2u5hBqsXV9lChoBkdAbn0y5Zr57GgHS+FoCEdAsx2u5rgwXnV9lChoBkdAcYFXI2fkFWgHS9xoCEdAsx3LzGxUvXV9lChoBkdAcbzGvfTCtWgHS+1oCEdAsx316nivPnV9lChoBkdAcM3dpZfUnWgHS8loCEdAsx4s30f5lHV9lChoBkdAcrrJTl1bJWgHS7RoCEdAsx47FId2gXV9lChoBkdAbd5+BpYcN2gHS+VoCEdAsx7tjpcHGHV9lChoBkdAcwkDvVmSQ2gHS9toCEdAsx79rO7g9HV9lChoBkdAcZFqoZQ53mgHS7RoCEdAsx8IIsyzonV9lChoBkdAcCGVjZtelmgHS8VoCEdAsx8pW6shgXV9lChoBkdAcO456dDpkmgHTRkBaAhHQLMfMjZteld1fZQoaAZHQHLNnOryUcJoB0vpaAhHQLMfPEFGG211fZQoaAZHQHLtMiSq2jRoB0vSaAhHQLMfUB1cMVl1fZQoaAZHQHIR/qX4TK1oB0vTaAhHQLMfUk690zV1fZQoaAZHQHL4pKjBVMpoB0vYaAhHQLMfaeE7GNt1fZQoaAZHQHJzYWk8A7xoB0vYaAhHQLMfhjqv/zd1fZQoaAZHQG7KRri2lVNoB0u7aAhHQLMfjQoCuEF1fZQoaAZHQHJ6B06o2n9oB00CAWgIR0CzIBnivPkadX2UKGgGR0BPrnmzSkTIaAdLdGgIR0CzIB4Q4CIUdX2UKGgGR0A5X/8VHnU2aAdLfmgIR0CzIDCc9W6tdX2UKGgGR0BwzhGCqZMMaAdLr2gIR0CzIGdrO7g9dX2UKGgGR0BwayvdM0xeaAdLtWgIR0CzIH4bjtG/dX2UKGgGR0ByRnIcR15jaAdL5mgIR0CzIJ+X3QD3dX2UKGgGR0BwRVN1yNn5aAdLrmgIR0CzIKdO/L1VdX2UKGgGR0ByTWq+8Gs4aAdL6WgIR0CzILEh3aBadX2UKGgGR0BySTSApazNaAdL4WgIR0CzIL4d2gWadX2UKGgGR0By3E+4b0e2aAdLs2gIR0CzIMxAv+OwdX2UKGgGR0ByDt3fQ8fWaAdLtmgIR0CzINcl1KXfdX2UKGgGR0BFfNwR5C4SaAdLYGgIR0CzISmHk92YdX2UKGgGR0Bw447wKBuoaAdLtGgIR0CzIWJFw1iwdX2UKGgGR0BkcOAoXsPbaAdN6ANoCEdAsyGHskY4yXV9lChoBkdAbmhARkEs8WgHS8FoCEdAsyGTGHYYi3V9lChoBkdAca3qDbrTpmgHS9FoCEdAsyGax3V093V9lChoBkdAZwmCp3os7WgHTegDaAhHQLMhrBC2MKl1fZQoaAZHQHKbDifg75poB0uvaAhHQLMhrjN6gNB1fZQoaAZHQG/MvTG5tnBoB0uwaAhHQLMh5IsRQJp1fZQoaAZHQHBzwxJul41oB0vAaAhHQLMh/ktEofF1fZQoaAZHQG/q4x1xKg9oB0uqaAhHQLMiAlJYkmh1fZQoaAZHQHHr4tpVS4xoB0viaAhHQLMiSRxcVxl1fZQoaAZHQG3mbhNucc5oB0vQaAhHQLMiUO3lS0l1fZQoaAZHQHLCJ2pyZKFoB0v3aAhHQLMifoxHoX91fZQoaAZHQHF1xllK9PFoB0ueaAhHQLMihEwnH/91fZQoaAZHQHKWQxesxPBoB0veaAhHQLMixES/TLJ1fZQoaAZHQGVy1CHARChoB03oA2gIR0CzItj6JqIrdX2UKGgGR0Bx4xfVqesgaAdLy2gIR0CzIw4FA3UAdX2UKGgGR0BxPKMYMvytaAdL0WgIR0CzIykYGdI5dX2UKGgGR0BxyHvlU6xPaAdL9GgIR0CzI1GKZUkwdX2UKGgGR0Bw6rI1cdHUaAdL/GgIR0CzI1QSWZ7YdX2UKGgGR0Bz2P4WUKRdaAdL92gIR0CzI3I/qxC6dX2UKGgGR0Byg1zySV4YaAdL32gIR0CzI37ns9jgdX2UKGgGR0BxwmtCAtnPaAdL5GgIR0CzI55k078vdX2UKGgGR0ByAYnogV45aAdL1mgIR0CzI9XSOR1YdX2UKGgGR0BwwB+Zw4sFaAdLv2gIR0CzI+KXKKYRdX2UKGgGR0Bu3vgiu+yraAdL2mgIR0CzI+dVmz0IdX2UKGgGR0By7mrmyPdVaAdLvmgIR0CzI+bDEWIodX2UKGgGR0Bw5gWRA8jiaAdLo2gIR0CzI/GCVbA2dX2UKGgGR0Bzy+Lm6oVEaAdLzGgIR0CzJE1uFYdRdX2UKGgGR0BxY9cB2fTTaAdLjmgIR0CzJFUnkT6BdX2UKGgGR0BQGanBLwnZaAdLZGgIR0CzJJZrgwXZdX2UKGgGR0BkVpAyEcsEaAdN6ANoCEdAsySzmbLEDXV9lChoBkdAc99n7YTTOWgHS+5oCEdAsyTGvX9R8HV9lChoBkdAcCIhOgxrSGgHS7FoCEdAsyTHpFCswXV9lChoBkdAcUu0NSZSemgHS6RoCEdAsyTQ9IPK+3V9lChoBkdAcV1rLhaTwGgHS9VoCEdAsyTdYFJQL3V9lChoBkdAcQkqqOtGNWgHS/JoCEdAsyTmu4gA63V9lChoBkdAcAkQnx8UmGgHS9NoCEdAsyT3Q8fV7XV9lChoBkdAcNHaL4vexmgHS75oCEdAsyU9ZvDP4XV9lChoBkdAcS6U7CBPK2gHS9doCEdAsyVtMYdhiXV9lChoBkdAcmiS4e9zwWgHS/xoCEdAsyWkCPp6hXV9lChoBkdAcnABFNL13GgHS75oCEdAsyWwK1G9YnVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 310,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf63f60612c07f219319b45984e007cfb82837a2e03215fbe1c2df8d42c93376
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edb5bfa522eea12656f580d79b575160e69ffadf6134333f3557afc3d590914c
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 264.49667270000003, "std_reward": 15.242202100084139, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-05T19:53:08.042929"}
|