61347023S's picture
Update README.md
501003e verified
|
raw
history blame
5.46 kB
metadata
license: mit
base_model: joeddav/xlm-roberta-large-xnli
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: xlm-roberta-large-xnli
    results: []

xlm-roberta-large-xnli

This model is a fine-tuned version of joeddav/xlm-roberta-large-xnli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3695
  • F1 Macro: 0.8741
  • F1 Micro: 0.8751
  • Accuracy Balanced: 0.8741
  • Accuracy: 0.8751
  • Precision Macro: 0.8741
  • Recall Macro: 0.8741
  • Precision Micro: 0.8751
  • Recall Micro: 0.8751

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-06
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 40
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.4814 0.17 200 0.4554 0.7851 0.7867 0.7852 0.7867 0.7850 0.7852 0.7867 0.7867
0.4031 0.34 400 0.4020 0.8228 0.8237 0.8235 0.8237 0.8223 0.8235 0.8237 0.8237
0.3425 0.51 600 0.3603 0.8450 0.8454 0.8473 0.8454 0.8448 0.8473 0.8454 0.8454
0.3374 0.68 800 0.3520 0.8518 0.8523 0.8538 0.8523 0.8514 0.8538 0.8523 0.8523
0.326 0.85 1000 0.3386 0.8529 0.8544 0.8521 0.8544 0.8541 0.8521 0.8544 0.8544
0.3059 1.02 1200 0.3425 0.8643 0.8650 0.8651 0.8650 0.8637 0.8651 0.8650 0.8650
0.2563 1.19 1400 0.3234 0.8708 0.8719 0.8703 0.8719 0.8713 0.8703 0.8719 0.8719
0.252 1.36 1600 0.3487 0.8580 0.8581 0.8616 0.8581 0.8590 0.8616 0.8581 0.8581
0.2323 1.52 1800 0.3576 0.8648 0.8666 0.8630 0.8666 0.8681 0.8630 0.8666 0.8666
0.2669 1.69 2000 0.3888 0.8461 0.8502 0.8425 0.8502 0.8603 0.8425 0.8502 0.8502
0.2514 1.86 2200 0.3323 0.8742 0.8751 0.8743 0.8751 0.8740 0.8743 0.8751 0.8751
0.1999 2.03 2400 0.3649 0.8759 0.8767 0.8762 0.8767 0.8755 0.8762 0.8767 0.8767
0.1764 2.2 2600 0.3889 0.8695 0.8708 0.8685 0.8708 0.8709 0.8685 0.8708 0.8708
0.1729 2.37 2800 0.3741 0.8676 0.8687 0.8674 0.8687 0.8679 0.8674 0.8687 0.8687
0.159 2.54 3000 0.3844 0.8760 0.8767 0.8772 0.8767 0.8754 0.8772 0.8767 0.8767
0.178 2.71 3200 0.3771 0.8693 0.8708 0.8680 0.8708 0.8714 0.8680 0.8708 0.8708
0.1893 2.88 3400 0.3678 0.8722 0.8729 0.8730 0.8729 0.8717 0.8730 0.8729 0.8729

eval result

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.357 0.261 0.369 0.341
eval_f1_macro 0.872 0.919 0.874 0.878
eval_f1_micro 0.874 0.919 0.875 0.879
eval_accuracy_balanced 0.872 0.919 0.874 0.877
eval_accuracy 0.874 0.919 0.875 0.879
eval_precision_macro 0.873 0.919 0.874 0.879
eval_recall_macro 0.872 0.919 0.874 0.877
eval_precision_micro 0.874 0.919 0.875 0.879
eval_recall_micro 0.874 0.919 0.875 0.879
eval_runtime 50.745 0.611 11.114 44.099
eval_samples_per_second 167.504 1547.376 169.966 171.365
eval_steps_per_second 2.621 24.536 2.699 2.698
Size of dataset 8500 946 1889 7557

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3