metadata
license: mit
base_model: joeddav/xlm-roberta-large-xnli
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlm-roberta-large-xnli
results: []
xlm-roberta-large-xnli
This model is a fine-tuned version of joeddav/xlm-roberta-large-xnli on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3695
- F1 Macro: 0.8741
- F1 Micro: 0.8751
- Accuracy Balanced: 0.8741
- Accuracy: 0.8751
- Precision Macro: 0.8741
- Recall Macro: 0.8741
- Precision Micro: 0.8751
- Recall Micro: 0.8751
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 8
- eval_batch_size: 64
- seed: 40
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|
0.4814 | 0.17 | 200 | 0.4554 | 0.7851 | 0.7867 | 0.7852 | 0.7867 | 0.7850 | 0.7852 | 0.7867 | 0.7867 |
0.4031 | 0.34 | 400 | 0.4020 | 0.8228 | 0.8237 | 0.8235 | 0.8237 | 0.8223 | 0.8235 | 0.8237 | 0.8237 |
0.3425 | 0.51 | 600 | 0.3603 | 0.8450 | 0.8454 | 0.8473 | 0.8454 | 0.8448 | 0.8473 | 0.8454 | 0.8454 |
0.3374 | 0.68 | 800 | 0.3520 | 0.8518 | 0.8523 | 0.8538 | 0.8523 | 0.8514 | 0.8538 | 0.8523 | 0.8523 |
0.326 | 0.85 | 1000 | 0.3386 | 0.8529 | 0.8544 | 0.8521 | 0.8544 | 0.8541 | 0.8521 | 0.8544 | 0.8544 |
0.3059 | 1.02 | 1200 | 0.3425 | 0.8643 | 0.8650 | 0.8651 | 0.8650 | 0.8637 | 0.8651 | 0.8650 | 0.8650 |
0.2563 | 1.19 | 1400 | 0.3234 | 0.8708 | 0.8719 | 0.8703 | 0.8719 | 0.8713 | 0.8703 | 0.8719 | 0.8719 |
0.252 | 1.36 | 1600 | 0.3487 | 0.8580 | 0.8581 | 0.8616 | 0.8581 | 0.8590 | 0.8616 | 0.8581 | 0.8581 |
0.2323 | 1.52 | 1800 | 0.3576 | 0.8648 | 0.8666 | 0.8630 | 0.8666 | 0.8681 | 0.8630 | 0.8666 | 0.8666 |
0.2669 | 1.69 | 2000 | 0.3888 | 0.8461 | 0.8502 | 0.8425 | 0.8502 | 0.8603 | 0.8425 | 0.8502 | 0.8502 |
0.2514 | 1.86 | 2200 | 0.3323 | 0.8742 | 0.8751 | 0.8743 | 0.8751 | 0.8740 | 0.8743 | 0.8751 | 0.8751 |
0.1999 | 2.03 | 2400 | 0.3649 | 0.8759 | 0.8767 | 0.8762 | 0.8767 | 0.8755 | 0.8762 | 0.8767 | 0.8767 |
0.1764 | 2.2 | 2600 | 0.3889 | 0.8695 | 0.8708 | 0.8685 | 0.8708 | 0.8709 | 0.8685 | 0.8708 | 0.8708 |
0.1729 | 2.37 | 2800 | 0.3741 | 0.8676 | 0.8687 | 0.8674 | 0.8687 | 0.8679 | 0.8674 | 0.8687 | 0.8687 |
0.159 | 2.54 | 3000 | 0.3844 | 0.8760 | 0.8767 | 0.8772 | 0.8767 | 0.8754 | 0.8772 | 0.8767 | 0.8767 |
0.178 | 2.71 | 3200 | 0.3771 | 0.8693 | 0.8708 | 0.8680 | 0.8708 | 0.8714 | 0.8680 | 0.8708 | 0.8708 |
0.1893 | 2.88 | 3400 | 0.3678 | 0.8722 | 0.8729 | 0.8730 | 0.8729 | 0.8717 | 0.8730 | 0.8729 | 0.8729 |
eval result
Datasets | asadfgglie/nli-zh-tw-all/test | asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test | eval_dataset | test_dataset |
---|---|---|---|---|
eval_loss | 0.357 | 0.261 | 0.369 | 0.341 |
eval_f1_macro | 0.872 | 0.919 | 0.874 | 0.878 |
eval_f1_micro | 0.874 | 0.919 | 0.875 | 0.879 |
eval_accuracy_balanced | 0.872 | 0.919 | 0.874 | 0.877 |
eval_accuracy | 0.874 | 0.919 | 0.875 | 0.879 |
eval_precision_macro | 0.873 | 0.919 | 0.874 | 0.879 |
eval_recall_macro | 0.872 | 0.919 | 0.874 | 0.877 |
eval_precision_micro | 0.874 | 0.919 | 0.875 | 0.879 |
eval_recall_micro | 0.874 | 0.919 | 0.875 | 0.879 |
eval_runtime | 50.745 | 0.611 | 11.114 | 44.099 |
eval_samples_per_second | 167.504 | 1547.376 | 169.966 | 171.365 |
eval_steps_per_second | 2.621 | 24.536 | 2.699 | 2.698 |
Size of dataset | 8500 | 946 | 1889 | 7557 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3