61347023S's picture
End of training
c87e153 verified
|
raw
history blame
1.99 kB
---
license: mit
base_model: joeddav/xlm-roberta-large-xnli
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlm-roberta-large-xnli-v4.0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-xnli-v4.0
This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4963
- F1 Macro: 0.8192
- F1 Micro: 0.8204
- Accuracy Balanced: 0.8190
- Accuracy: 0.8204
- Precision Macro: 0.8193
- Recall Macro: 0.8190
- Precision Micro: 0.8204
- Recall Micro: 0.8204
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 8
- eval_batch_size: 64
- seed: 40
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
| 0.3593 | 1.69 | 200 | 0.4297 | 0.8211 | 0.8218 | 0.8224 | 0.8218 | 0.8206 | 0.8224 | 0.8218 | 0.8218 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3