61347023S's picture
Update README.md
f933b49 verified
|
raw
history blame
2.74 kB
metadata
license: mit
base_model: joeddav/xlm-roberta-large-xnli
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: xlm-roberta-large-xnli-v4.0
    results: []

xlm-roberta-large-xnli-v4.0

This model is a fine-tuned version of joeddav/xlm-roberta-large-xnli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4963
  • F1 Macro: 0.8192
  • F1 Micro: 0.8204
  • Accuracy Balanced: 0.8190
  • Accuracy: 0.8204
  • Precision Macro: 0.8193
  • Recall Macro: 0.8190
  • Precision Micro: 0.8204
  • Recall Micro: 0.8204

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-06
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 40
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.3593 1.69 200 0.4297 0.8211 0.8218 0.8224 0.8218 0.8206 0.8224 0.8218 0.8218

eval result

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.494 0.773 0.521 0.522
eval_f1_macro 0.821 0.627 0.805 0.803
eval_f1_micro 0.822 0.644 0.806 0.803
eval_accuracy_balanced 0.821 0.638 0.806 0.804
eval_accuracy 0.822 0.644 0.806 0.803
eval_precision_macro 0.821 0.663 0.804 0.803
eval_recall_macro 0.821 0.638 0.806 0.804
eval_precision_micro 0.822 0.644 0.806 0.803
eval_recall_micro 0.822 0.644 0.806 0.803
eval_runtime 50.601 0.613 11.113 44.097
eval_samples_per_second 167.982 1543.156 169.983 171.37
eval_steps_per_second 2.628 24.469 2.7 2.699
Size of dataset 8500 946 1889 7557

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3