61347023S's picture
Update README.md
d9ae536 verified
|
raw
history blame
3.09 kB
---
license: mit
base_model: joeddav/xlm-roberta-large-xnli
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlm-roberta-large-xnli-v5.0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-xnli-v5.0
This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4987
- F1 Macro: 0.8279
- F1 Micro: 0.8288
- Accuracy Balanced: 0.8278
- Accuracy: 0.8288
- Precision Macro: 0.8281
- Recall Macro: 0.8278
- Precision Micro: 0.8288
- Recall Micro: 0.8288
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 8
- eval_batch_size: 64
- seed: 40
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
| 0.3851 | 0.85 | 200 | 0.4586 | 0.8017 | 0.8025 | 0.8029 | 0.8025 | 0.8012 | 0.8029 | 0.8025 | 0.8025 |
| 0.2689 | 1.69 | 400 | 0.4498 | 0.8137 | 0.8147 | 0.8145 | 0.8147 | 0.8133 | 0.8145 | 0.8147 | 0.8147 |
| 0.194 | 2.54 | 600 | 0.5334 | 0.8244 | 0.8253 | 0.8252 | 0.8253 | 0.8239 | 0.8252 | 0.8253 | 0.8253 |
### eval result
|Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset|
| :---: | :---: | :---: | :---: | :---: |
|eval_loss|0.535|0.278|0.552|0.499|
|eval_f1_macro|0.817|0.916|0.823|0.828|
|eval_f1_micro|0.818|0.916|0.824|0.829|
|eval_accuracy_balanced|0.817|0.917|0.823|0.828|
|eval_accuracy|0.818|0.916|0.824|0.829|
|eval_precision_macro|0.817|0.917|0.823|0.828|
|eval_recall_macro|0.817|0.917|0.823|0.828|
|eval_precision_micro|0.818|0.916|0.824|0.829|
|eval_recall_micro|0.818|0.916|0.824|0.829|
|eval_runtime|50.667|0.613|11.117|44.117|
|eval_samples_per_second|167.761|1542.179|169.917|171.295|
|eval_steps_per_second|2.625|24.453|2.699|2.697|
|Size of dataset|8500|946|1889|7557|
### Framework versions
- Transformers 4.33.3
- Pytorch 2.5.1+cu121
- Datasets 2.14.7
- Tokenizers 0.13.3