61347023S's picture
Update README.md
907d67e verified
metadata
license: mit
base_model: joeddav/xlm-roberta-large-xnli
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: xlm-roberta-large-xnli-v5.0
    results: []

xlm-roberta-large-xnli-v5.0

This model is a fine-tuned version of joeddav/xlm-roberta-large-xnli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4987
  • F1 Macro: 0.8279
  • F1 Micro: 0.8288
  • Accuracy Balanced: 0.8278
  • Accuracy: 0.8288
  • Precision Macro: 0.8281
  • Recall Macro: 0.8278
  • Precision Micro: 0.8288
  • Recall Micro: 0.8288

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-06
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 40
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.3851 0.85 200 0.4586 0.8017 0.8025 0.8029 0.8025 0.8012 0.8029 0.8025 0.8025
0.2689 1.69 400 0.4498 0.8137 0.8147 0.8145 0.8147 0.8133 0.8145 0.8147 0.8147
0.194 2.54 600 0.5334 0.8244 0.8253 0.8252 0.8253 0.8239 0.8252 0.8253 0.8253

eval result

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.535 0.278 0.552 0.499
eval_f1_macro 0.817 0.916 0.823 0.828
eval_f1_micro 0.818 0.916 0.824 0.829
eval_accuracy_balanced 0.817 0.917 0.823 0.828
eval_accuracy 0.818 0.916 0.824 0.829
eval_precision_macro 0.817 0.917 0.823 0.828
eval_recall_macro 0.817 0.917 0.823 0.828
eval_precision_micro 0.818 0.916 0.824 0.829
eval_recall_micro 0.818 0.916 0.824 0.829
eval_runtime 50.89 0.639 11.177 44.352
eval_samples_per_second 167.026 1480.253 169.012 170.387
eval_steps_per_second 2.613 23.471 2.684 2.683
Size of dataset 8500 946 1889 7557

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3