metadata
license: mit
base_model: hongpingjun98/BioMedNLP_DeBERTa
tags:
- generated_from_trainer
datasets:
- sem_eval_2024_task_2
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: BioMedNLP_DeBERTa_all_updates
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sem_eval_2024_task_2
type: sem_eval_2024_task_2
config: sem_eval_2024_task_2_source
split: validation
args: sem_eval_2024_task_2_source
metrics:
- name: Accuracy
type: accuracy
value: 0.705
- name: Precision
type: precision
value: 0.7238235615241838
- name: Recall
type: recall
value: 0.7050000000000001
- name: F1
type: f1
value: 0.6986644194182692
BioMedNLP_DeBERTa_all_updates
This model is a fine-tuned version of hongpingjun98/BioMedNLP_DeBERTa on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set:
- Loss: 2.1863
- Accuracy: 0.705
- Precision: 0.7238
- Recall: 0.7050
- F1: 0.6987
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.4238 | 1.0 | 116 | 0.6639 | 0.665 | 0.6678 | 0.665 | 0.6636 |
0.4316 | 2.0 | 232 | 0.6644 | 0.68 | 0.6875 | 0.6800 | 0.6768 |
0.3819 | 3.0 | 348 | 0.7328 | 0.71 | 0.7188 | 0.71 | 0.7071 |
0.3243 | 4.0 | 464 | 0.9162 | 0.7 | 0.7083 | 0.7 | 0.6970 |
0.4053 | 5.0 | 580 | 0.7145 | 0.715 | 0.7214 | 0.7150 | 0.7129 |
0.2548 | 6.0 | 696 | 1.0598 | 0.69 | 0.7016 | 0.69 | 0.6855 |
0.3455 | 7.0 | 812 | 0.7782 | 0.72 | 0.7232 | 0.72 | 0.7190 |
0.2177 | 8.0 | 928 | 1.1182 | 0.69 | 0.6950 | 0.69 | 0.6880 |
0.2304 | 9.0 | 1044 | 1.4332 | 0.695 | 0.708 | 0.695 | 0.6902 |
0.2103 | 10.0 | 1160 | 1.2736 | 0.7 | 0.7198 | 0.7 | 0.6931 |
0.1748 | 11.0 | 1276 | 1.2654 | 0.675 | 0.6816 | 0.675 | 0.6720 |
0.1608 | 12.0 | 1392 | 1.8885 | 0.63 | 0.6689 | 0.63 | 0.6074 |
0.1082 | 13.0 | 1508 | 1.7004 | 0.68 | 0.7005 | 0.6800 | 0.6716 |
0.1074 | 14.0 | 1624 | 1.8145 | 0.67 | 0.6804 | 0.67 | 0.6652 |
0.0238 | 15.0 | 1740 | 1.7608 | 0.68 | 0.6931 | 0.68 | 0.6745 |
0.038 | 16.0 | 1856 | 1.9937 | 0.67 | 0.6953 | 0.6700 | 0.6589 |
0.0365 | 17.0 | 1972 | 2.1871 | 0.675 | 0.6964 | 0.675 | 0.6659 |
0.0144 | 18.0 | 2088 | 2.1093 | 0.695 | 0.7059 | 0.6950 | 0.6909 |
0.0014 | 19.0 | 2204 | 2.1559 | 0.695 | 0.7103 | 0.6950 | 0.6893 |
0.0324 | 20.0 | 2320 | 2.1863 | 0.705 | 0.7238 | 0.7050 | 0.6987 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0