A-Bar's picture
Model save
b021daf verified
metadata
license: mit
base_model: hongpingjun98/BioMedNLP_DeBERTa
tags:
  - generated_from_trainer
datasets:
  - sem_eval_2024_task_2
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: BioMedNLP_DeBERTa_all_updates
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: sem_eval_2024_task_2
          type: sem_eval_2024_task_2
          config: sem_eval_2024_task_2_source
          split: validation
          args: sem_eval_2024_task_2_source
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.705
          - name: Precision
            type: precision
            value: 0.7238235615241838
          - name: Recall
            type: recall
            value: 0.7050000000000001
          - name: F1
            type: f1
            value: 0.6986644194182692

BioMedNLP_DeBERTa_all_updates

This model is a fine-tuned version of hongpingjun98/BioMedNLP_DeBERTa on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1863
  • Accuracy: 0.705
  • Precision: 0.7238
  • Recall: 0.7050
  • F1: 0.6987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4238 1.0 116 0.6639 0.665 0.6678 0.665 0.6636
0.4316 2.0 232 0.6644 0.68 0.6875 0.6800 0.6768
0.3819 3.0 348 0.7328 0.71 0.7188 0.71 0.7071
0.3243 4.0 464 0.9162 0.7 0.7083 0.7 0.6970
0.4053 5.0 580 0.7145 0.715 0.7214 0.7150 0.7129
0.2548 6.0 696 1.0598 0.69 0.7016 0.69 0.6855
0.3455 7.0 812 0.7782 0.72 0.7232 0.72 0.7190
0.2177 8.0 928 1.1182 0.69 0.6950 0.69 0.6880
0.2304 9.0 1044 1.4332 0.695 0.708 0.695 0.6902
0.2103 10.0 1160 1.2736 0.7 0.7198 0.7 0.6931
0.1748 11.0 1276 1.2654 0.675 0.6816 0.675 0.6720
0.1608 12.0 1392 1.8885 0.63 0.6689 0.63 0.6074
0.1082 13.0 1508 1.7004 0.68 0.7005 0.6800 0.6716
0.1074 14.0 1624 1.8145 0.67 0.6804 0.67 0.6652
0.0238 15.0 1740 1.7608 0.68 0.6931 0.68 0.6745
0.038 16.0 1856 1.9937 0.67 0.6953 0.6700 0.6589
0.0365 17.0 1972 2.1871 0.675 0.6964 0.675 0.6659
0.0144 18.0 2088 2.1093 0.695 0.7059 0.6950 0.6909
0.0014 19.0 2204 2.1559 0.695 0.7103 0.6950 0.6893
0.0324 20.0 2320 2.1863 0.705 0.7238 0.7050 0.6987

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0