β± ktdsbaseLM v0.11μ openchat3.5λ₯Ό Foundation λͺ¨λΈλ‘ νλ νκ΅μ΄ λ° νκ΅μ λ€μν
λ¬Ένμ μ μ©ν μ μλλ‘ νκΈ° μν΄
κ°λ° λμμΌλ©° μ체 μ μν 53μμμ νκ΅μ΄ λ°μ΄ν°λ₯Ό νμ©νμ¬ νκ΅ μ¬ν κ°μΉμ
λ¬Ένλ₯Ό μ΄ν΄νλ λͺ¨λΈ μ λλ€. β
βΆ λͺ¨λΈ μ€λͺ
- λͺ¨λΈλͺ λ° μ£ΌμκΈ°λ₯: KTDSbaseLM v0.11μ OpenChat 3.5 λͺ¨λΈμ κΈ°λ°μΌλ‘ SFT λ°©μμΌλ‘ νμΈνλλ Mistral 7B / openchat3.5 κΈ°λ° λͺ¨λΈμ λλ€. νκ΅μ΄μ νκ΅μ λ€μν λ¬Ένμ λ§₯λ½μ μ΄ν΄νλλ‘ μ€κ³λμμΌλ©° β¨β¨, μ체 μ μν 135κ° μμμ νκ΅μ΄ λ°μ΄ν°λ₯Ό νμ©ν΄ νκ΅ μ¬νμ κ°μΉμ λ¬Ένλ₯Ό λ°μν©λλ€. μ£Όμ κΈ°λ₯μΌλ‘λ ν μ€νΈ μμ±, λν μΆλ‘ , λ¬Έμ μμ½, μ§μμλ΅, κ°μ λΆμ λ° μμ°μ΄ μ²λ¦¬ κ΄λ ¨ λ€μν μμ μ μ§μνλ©°, νμ© λΆμΌλ λ²λ₯ , μ¬λ¬΄, κ³Όν, κ΅μ‘, λΉμ¦λμ€, λ¬Έν μ°κ΅¬ λ± λ€μν λΆμΌμμ μμ©λ μ μμ΅λλ€.
- λͺ¨λΈ μν€ν μ²: KTDSBaseLM v0.11μ Mistral 7B λͺ¨λΈμ κΈ°λ°μΌλ‘, νλΌλ―Έν° μλ 70μ΅ κ°(7B)λ‘ κ΅¬μ±λ κ³ μ±λ₯ μΈμ΄ λͺ¨λΈμ λλ€. μ΄ λͺ¨λΈμ OpenChat 3.5λ₯Ό νμ΄λ°μ΄μ λͺ¨λΈλ‘ μΌμ, SFT(μ§λ λ―ΈμΈ μ‘°μ ) λ°©μμ ν΅ν΄ νκ΅μ΄μ νκ΅ λ¬Ένμ νΉνλ μ±λ₯μ λ°ννλλ‘ νλ ¨λμμ΅λλ€. Mistral 7Bμ κ²½λνλ ꡬ쑰λ λΉ λ₯Έ μΆλ‘ μλμ λ©λͺ¨λ¦¬ ν¨μ¨μ±μ 보μ₯νλ©°, λ€μν μμ°μ΄ μ²λ¦¬ μμ μ μ ν©νκ² μ΅μ νλμ΄ μμ΅λλ€. μ΄ μν€ν μ²λ ν μ€νΈ μμ±, μ§μμλ΅, λ¬Έμ μμ½, κ°μ λΆμκ³Ό κ°μ λ€μν μμ μμ νμν μ±λ₯μ 보μ¬μ€λλ€.
β· νμ΅ λ°μ΄ν°
- ktdsbaseLM v0.11μ μ체 κ°λ°ν μ΄ 3.6GB ν¬κΈ°μ λ°μ΄ν°λ₯Ό λ°νμΌλ‘ νμ΅λμμ΅λλ€. λͺ¨λ 233λ§ κ±΄μ QnA, μμ½, λΆλ₯ λ± λ°μ΄ν°λ₯Ό ν¬ν¨νλ©°, κ·Έ μ€ 133λ§ κ±΄μ 53κ° μμμ κ°κ΄μ λ¬Έμ λ‘ κ΅¬μ±λμμ΅λλ€. μ΄ μμμλ νκ΅μ¬, μ¬ν, μ¬λ¬΄, λ²λ₯ , μΈλ¬΄, μν, μλ¬Ό, 물리, νν λ±μ΄ ν¬ν¨λλ©°, Chain of Thought λ°©μμΌλ‘ νμ΅λμμ΅λλ€. λν 130λ§ κ±΄μ μ£Όκ΄μ λ¬Έμ λ νκ΅μ¬, μ¬λ¬΄, λ²λ₯ , μΈλ¬΄, μν λ± 38κ° μμμ κ±Έμ³ νμ΅λμμ΅λλ€. νμ΅ λ°μ΄ν° μ€ νκ΅μ μ¬ν κ°μΉμ μΈκ°μ κ°μ μ μ΄ν΄νκ³ μ§μν μ¬νμ λ°λΌ μΆλ ₯ν μ μλ λ°μ΄ν°λ₯Ό νμ΅νμμ΅λλ€.
- νμ΅ Instruction Datasets Format:
{"prompt": "prompt text", "completion": "ideal generated text"}
βΈ μ¬μ© μ¬λ‘
ktdsbaseLM v0.12λ λ€μν μμ© λΆμΌμμ μ¬μ©λ μ μμ΅λλ€. μλ₯Ό λ€μ΄:
- κ΅μ‘ λΆμΌ: μμ¬, μν, κ³Όν λ± λ€μν νμ΅ μλ£μ λν μ§μμλ΅ λ° μ€λͺ μμ±.
- λΉμ¦λμ€: λ²λ₯ , μ¬λ¬΄, μΈλ¬΄ κ΄λ ¨ μ§μμ λν λ΅λ³ μ 곡 λ° λ¬Έμ μμ½.
- μ°κ΅¬ λ° λ¬Έν: νκ΅ μ¬νμ λ¬Ένμ λ§μΆ μμ°μ΄ μ²λ¦¬ μμ , κ°μ λΆμ, λ¬Έμ μμ± λ° λ²μ.
- κ³ κ° μλΉμ€: μ¬μ©μμμ λν μμ± λ° λ§μΆ€ν μλ΅ μ 곡.
- μ΄ λͺ¨λΈμ λ€μν μμ°μ΄ μ²λ¦¬ μμ μμ λμ νμ©λλ₯Ό κ°μ§λλ€.
βΉ νκ³ ββ
- ktdsBaseLM v0.12μ νκ΅μ΄μ νκ΅ λ¬Ένμ νΉνλμ΄ μμΌλ, νΉμ μμ(μ: μ΅μ κ΅μ μλ£, μ λ¬Έ λΆμΌ)μ λ°μ΄ν° λΆμ‘±μΌλ‘ μΈν΄ λ€λ₯Έ μΈμ΄ λλ λ¬Ένμ λν μλ΅μ μ νμ±μ΄ λ¨μ΄μ§ μ μμ΅λλ€. λν, 볡μ‘ν λ Όλ¦¬μ μ¬κ³ λ₯Ό μꡬνλ λ¬Έμ μ λν΄ μ νλ μΆλ‘ λ₯λ ₯μ λ³΄μΌ μ μμΌλ©°, νΈν₯λ λ°μ΄ν°κ° ν¬ν¨λ κ²½μ° νΈν₯λ μλ΅μ΄ μμ±λ κ°λ₯μ±λ μ‘΄μ¬ν©λλ€.
βΊ μ¬μ© λ°©λ²
import os
import os.path as osp
import sys
import fire
import json
from typing import List, Union
import pandas as pd
import torch
from torch.nn import functional as F
import transformers
from transformers import TrainerCallback, TrainingArguments, TrainerState, TrainerControl, BitsAndBytesConfig
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
from peft import (
LoraConfig,
get_peft_model,
set_peft_model_state_dict
)
from peft import PeftModel
import re
import ast
device = 'auto' #@param {type: "string"}
model = '' #@param {type: "string"}
model = AutoModelForCausalLM.from_pretrained(
model,
quantization_config=bnb_config,
#load_in_4bit=True, # Quantization Load
device_map=device)
tokenizer = AutoTokenizer.from_pretrained(base_LLM_model)
input_text = "μλ
νμΈμ."
inputs = tokenizer(input_text, return_tensors="pt")
inputs = inputs.to("cuda:0")
with torch.no_grad():
outputs = model.generate(**inputs, max_length=1024)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
β ktdsλ openchat μΈμλ LlaMA, Polyglot, EEVE λ± λνμ μΈ LLMμ λ€μν μμμ νκ΅μ λ¬Ένμ μ§μμ νμΈνλν LLMμ μ 곡ν μμ μ λλ€.
Hereβs the English version of the provided text:
βΆ Model Description
Model Name and Key Features:
KTDSbaseLM v0.11 is based on the OpenChat 3.5 model, fine-tuned using the SFT method on the Mistral 7B model.
It is designed to understand Korean and various cultural contexts, utilizing data from 135 domains in Korean society.
The model supports tasks such as text generation, conversation inference, document summarization,
question answering, sentiment analysis, and other NLP tasks.
Its applications span fields like law, finance, science, education, business, and cultural research.
Model Architecture:
KTDSBaseLM v0.11 is a high-performance language model with 7 billion parameters based on the Mistral 7B model.
It uses OpenChat 3.5 as the foundation and is fine-tuned using SFT to excel in Korean language and culture.
The streamlined Mistral 7B architecture ensures fast inference and memory efficiency,
optimized for various NLP tasks like text generation, question answering, document summarization, and sentiment analysis.
β· Training Data
KTDSbaseLM v0.11 was trained on 3.6GB of data, comprising 2.33 million Q&A instances. This includes 1.33 million multiple-choice questions across 53 domains such as history, finance, law, tax, and science, trained with the Chain of Thought method. Additionally, 1.3 million short-answer questions cover 38 domains including history, finance, and law.
Training Instruction Dataset Format:{"prompt": "prompt text", "completion": "ideal generated text"}
βΈ Use Cases
KTDSbaseLM v0.11 can be used across multiple fields, such as:
- Education: Answering questions and generating explanations for subjects like history, math, and science.
- Business: Providing responses and summaries for legal, financial, and tax-related queries.
- Research and Culture: Performing NLP tasks, sentiment analysis, document generation, and translation.
- Customer Service: Generating conversations and personalized responses for users.
This model is highly versatile in various NLP tasks.
βΉ Limitations
KTDSBaseLM v0.11 is specialized in Korean language and culture. However, it may lack accuracy in responding to topics outside its scope, such as international or specialized data. Additionally, it may have limited reasoning ability for complex logical problems and may produce biased responses if trained on biased data.
βΊ Usage Instructions
import os
import os.path as osp
import sys
import fire
import json
from typing import List, Union
import pandas as pd
import torch
from torch.nn import functional as F
import transformers
from transformers import TrainerCallback, TrainingArguments, TrainerState, TrainerControl, BitsAndBytesConfig
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
from peft import (
LoraConfig,
get_peft_model,
set_peft_model_state_dict
)
from peft import PeftModel
import re
import ast
device = 'auto' #@param {type: "string"}
model = '' #@param {type: "string"}
model = AutoModelForCausalLM.from_pretrained(
model,
quantization_config=bnb_config,
#load_in_4bit=True, # Quantization Load
device_map=device)
tokenizer = AutoTokenizer.from_pretrained(base_LLM_model)
input_text = "μλ
νμΈμ."
inputs = tokenizer(input_text, return_tensors="pt")
inputs = inputs.to("cuda:0")
with torch.no_grad():
outputs = model.generate(**inputs, max_length=1024)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
KTDS plans to provide fine-tuned LLMs (Large Language Models) across various domains of Korean culture and knowledge,
including models based on not only OpenChat but also LLaMA, Polyglot, and EEVE.
These models will be tailored to better understand and generate content specific to Korean contexts.
- Downloads last month
- 3,077
Model tree for AIDX-ktds/ktdsbaseLM-v0.12-based-on-openchat3.5
Base model
openchat/openchat_3.5