AIFunOver's picture
Upload README.md with huggingface_hub
00cf045 verified
|
raw
history blame
1.43 kB
metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets:
  - s2orc
  - flax-sentence-embeddings/stackexchange_xml
  - ms_marco
  - gooaq
  - yahoo_answers_topics
  - code_search_net
  - search_qa
  - eli5
  - snli
  - multi_nli
  - wikihow
  - natural_questions
  - trivia_qa
  - embedding-data/sentence-compression
  - embedding-data/flickr30k-captions
  - embedding-data/altlex
  - embedding-data/simple-wiki
  - embedding-data/QQP
  - embedding-data/SPECTER
  - embedding-data/PAQ_pairs
  - embedding-data/WikiAnswers
language: en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
  - openvino
  - nncf
  - 8-bit
base_model_relation: quantized

This model is a quantized version of sentence-transformers/all-MiniLM-L6-v2 and is converted to the OpenVINO format. This model was obtained via the nncf-quantization space with optimum-intel. First make sure you have optimum-intel installed:

pip install optimum[openvino]

To load your model you can do as follows:

from optimum.intel import OVModelForFeatureExtraction
model_id = "AIFunOver/all-MiniLM-L6-v2-openvino-8bit"
model = OVModelForFeatureExtraction.from_pretrained(model_id)