AIR-hl's picture
Update README.md
f39c13e verified
---
license: llama3.2
datasets:
- HuggingFaceH4/ultrachat_200k
base_model:
- meta-llama/Llama-3.2-1B
pipeline_tag: text-generation
tags:
- trl
- llama
- sft
- alignment
- transformers
- custome
- chat
---
# Llama-3.2-1B-ultrachat200k
## Model Details
- **Model type:** sft model
- **License:** llama3.2
- **Finetuned from model:** [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B)
- **Training data:** [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- **Training framework:** [trl](https://github.com/huggingface/trl)
## Training Details
### Training Hyperparameters
`attn_implementation`: flash_attention_2 \
`bf16`: True \
`learning_rate`: 2e-5 \
`lr_scheduler_type`: cosine \
`per_device_train_batch_size`: 2 \
`gradient_accumulation_steps`: 16 \
`torch_dtype`: bfloat16 \
`num_train_epochs`: 1 \
`max_seq_length`: 2048 \
`warmup_ratio`: 0.1
### Results
`init_train_loss`: 1.726 \
`final_train_loss`: 1.22 \
### Training script
```python
import multiprocessing
from datasets import load_dataset
from tqdm.rich import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM
from trl import (
ModelConfig,
SFTTrainer,
get_peft_config,
get_quantization_config,
get_kbit_device_map,
SFTConfig,
ScriptArguments,
TrlParser
)
tqdm.pandas()
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
attn_implementation=model_config.attn_implementation,
torch_dtype=model_config.torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path,
**model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
)
tokenizer.pad_token = '<|end_of_text|>'
train_dataset = load_dataset(args.dataset_name,
split=args.dataset_train_split,
num_proc=multiprocessing.cpu_count())
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
processing_class=tokenizer,
peft_config=get_peft_config(model_config),
)
trainer.train()
trainer.save_model(training_args.output_dir)
```
### Test Script
```python
from vllm import LLM
from datasets import load_dataset
from vllm.sampling_params import SamplingParams
from transformers import AutoTokenizer
MODEL_PATH = "autodl-tmp/saves/Llama-3.2-1B-ultrachat200k"
model = LLM(MODEL_PATH,
tensor_parallel_size=1,
dtype='bfloat16')
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
input = tokenizer.apply_chat_template([{"role": "user", "content": "Where is Harbin?"}],
tokenize=False,
add_generation_prompt=True)
sampling_params = SamplingParams(max_tokens=1024,
temperature=0.7,
logprobs=1,
stop_token_ids=[tokenizer.eos_token_id])
vllm_generations = model.generate(input,
sampling_params)
print(vllm_generations[0].outputs[0].text)
# print result: Harbin is located in northeastern China in the Heilongjiang province. It is the capital of Heilongjiang province in the Northeast Asia.
```