layoutlm-donut-own
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3438
- Ban: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Eader:client: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Eader:client Tax Id: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Eader:iban: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Eader:invoice Date: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Eader:invoice No: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Eader:seller: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Eader:seller Tax Id: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 43}
- Eller: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Eller Tax Id: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Lient: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Lient Tax Id: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Nvoice Date: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Nvoice No: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Otal Gross Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Otal Net Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Otal Vat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Tem Desc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
- Tem Gross Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
- Tem Net Price: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
- Tem Net Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
- Tem Qty: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
- Tem Vat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
- Tems Row1:item Desc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Tems Row1:item Gross Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Tems Row1:item Net Price: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Tems Row1:item Net Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 43}
- Tems Row1:item Qty: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45}
- Tems Row1:item Vat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 43}
- Tems Row1:seller Tax Id: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
- Tems Row2:item Desc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39}
- Tems Row2:item Gross Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39}
- Tems Row2:item Net Price: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38}
- Tems Row2:item Net Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39}
- Tems Row2:item Qty: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 40}
- Tems Row2:item Vat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38}
- Tems Row3:item Desc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32}
- Tems Row3:item Gross Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32}
- Tems Row3:item Net Price: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32}
- Tems Row3:item Net Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32}
- Tems Row3:item Qty: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33}
- Tems Row3:item Vat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 31}
- Tems Row4:item Desc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26}
- Tems Row4:item Gross Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26}
- Tems Row4:item Net Price: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26}
- Tems Row4:item Net Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26}
- Tems Row4:item Qty: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27}
- Tems Row4:item Vat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25}
- Tems Row5:item Desc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21}
- Tems Row5:item Gross Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21}
- Tems Row5:item Net Price: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21}
- Tems Row5:item Net Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21}
- Tems Row5:item Qty: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22}
- Tems Row5:item Vat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20}
- Tems Row6:item Desc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}
- Tems Row6:item Gross Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}
- Tems Row6:item Net Price: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}
- Tems Row6:item Net Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}
- Tems Row6:item Qty: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}
- Tems Row6:item Vat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17}
- Tems Row7:item Desc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11}
- Tems Row7:item Gross Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11}
- Tems Row7:item Net Price: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11}
- Tems Row7:item Net Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11}
- Tems Row7:item Qty: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11}
- Tems Row7:item Vat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10}
- Ther: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 609}
- Ummary:total Gross Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Ummary:total Net Worth: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Ummary:total Vat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44}
- Overall Precision: 0.0
- Overall Recall: 0.0
- Overall F1: 0.0
- Overall Accuracy: 0.5689
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Ban | Eader:client | Eader:client Tax Id | Eader:iban | Eader:invoice Date | Eader:invoice No | Eader:seller | Eader:seller Tax Id | Eller | Eller Tax Id | Lient | Lient Tax Id | Nvoice Date | Nvoice No | Otal Gross Worth | Otal Net Worth | Otal Vat | Tem Desc | Tem Gross Worth | Tem Net Price | Tem Net Worth | Tem Qty | Tem Vat | Tems Row1:item Desc | Tems Row1:item Gross Worth | Tems Row1:item Net Price | Tems Row1:item Net Worth | Tems Row1:item Qty | Tems Row1:item Vat | Tems Row1:seller Tax Id | Tems Row2:item Desc | Tems Row2:item Gross Worth | Tems Row2:item Net Price | Tems Row2:item Net Worth | Tems Row2:item Qty | Tems Row2:item Vat | Tems Row3:item Desc | Tems Row3:item Gross Worth | Tems Row3:item Net Price | Tems Row3:item Net Worth | Tems Row3:item Qty | Tems Row3:item Vat | Tems Row4:item Desc | Tems Row4:item Gross Worth | Tems Row4:item Net Price | Tems Row4:item Net Worth | Tems Row4:item Qty | Tems Row4:item Vat | Tems Row5:item Desc | Tems Row5:item Gross Worth | Tems Row5:item Net Price | Tems Row5:item Net Worth | Tems Row5:item Qty | Tems Row5:item Vat | Tems Row6:item Desc | Tems Row6:item Gross Worth | Tems Row6:item Net Price | Tems Row6:item Net Worth | Tems Row6:item Qty | Tems Row6:item Vat | Tems Row7:item Desc | Tems Row7:item Gross Worth | Tems Row7:item Net Price | Tems Row7:item Net Worth | Tems Row7:item Qty | Tems Row7:item Vat | Ther | Ummary:total Gross Worth | Ummary:total Net Worth | Ummary:total Vat | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.6109 | 1.0 | 7 | 2.7573 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 43} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 43} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 43} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 40} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 31} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 609} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | 0.0 | 0.0 | 0.0 | 0.5689 |
2.5323 | 2.0 | 14 | 2.3438 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 43} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 43} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 43} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 40} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 31} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 26} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 25} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 609} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 44} | 0.0 | 0.0 | 0.0 | 0.5689 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.