Shourya Bose
add timefm weights
a9073bb
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pytorch version of patched decoder."""
import dataclasses
import math
from typing import List, Tuple
import torch
from torch import nn
import torch.nn.functional as F
def _create_quantiles() -> list[float]:
return [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
@dataclasses.dataclass
class TimesFMConfig:
"""Config for initializing timesfm patched_decoder class."""
# The number of blocks in the model.
num_layers: int = 20
# The number of attention heads used in the attention layers of the model.
num_heads: int = 16
# The number of key-value heads for implementing attention.
num_kv_heads: int = 16
# The hidden size of the model.
hidden_size: int = 1280
# The dimension of the MLP representations.
intermediate_size: int = 1280
# The number of head dimensions.
head_dim: int = 80
# The epsilon used by the rms normalization layers.
rms_norm_eps: float = 1e-6
# Patch length
patch_len: int = 32
# Horizon length
horizon_len: int = 128
# quantiles
quantiles: List[float] = dataclasses.field(default_factory=_create_quantiles)
# Padding value
pad_val: float = 1123581321.0
# Tolerance
tolerance: float = 1e-6
# The dtype of the weights.
dtype: str = "bfloat32"
# use positional embedding
use_positional_embedding: bool = True
def _masked_mean_std(
inputs: torch.Tensor,
padding: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Calculates mean and standard deviation of `inputs` across axis 1.
It excludes values where `padding` is 1.
Args:
inputs: A PyTorch tensor of shape [b, n, p].
padding: A PyTorch tensor of shape [b, n, p] with values 0 or 1.
Returns:
A tuple containing the mean and standard deviation.
We return the statistics of the first patch with more than three non-padded
values.
"""
# Selecting the first patch with more than 3 unpadded values.
pad_sum = torch.sum(1 - padding, dim=2)
def _get_patch_index(arr: torch.Tensor):
indices = torch.argmax((arr >= 3).to(torch.int32), dim=1)
row_sum = (arr >= 3).to(torch.int32).sum(dim=1)
return torch.where(row_sum == 0, arr.shape[1] - 1, indices)
patch_indices = _get_patch_index(pad_sum)
bidxs = torch.arange(inputs.shape[0])
arr = inputs[bidxs, patch_indices, :]
pad = padding[bidxs, patch_indices, :]
# Create a mask where padding is 0
mask = 1 - pad
# Calculate the number of valid elements
num_valid_elements = torch.sum(mask, dim=1)
num_valid_elements = torch.where(
num_valid_elements == 0,
torch.tensor(1,
dtype=num_valid_elements.dtype,
device=num_valid_elements.device),
num_valid_elements,
)
# Calculate the masked sum and squared sum
masked_sum = torch.sum(arr * mask, dim=1)
masked_squared_sum = torch.sum((arr * mask)**2, dim=1)
# Calculate the masked mean and standard deviation
masked_mean = masked_sum / num_valid_elements
masked_var = masked_squared_sum / num_valid_elements - masked_mean**2
masked_var = torch.where(
masked_var < 0.0,
torch.tensor(0.0, dtype=masked_var.dtype, device=masked_var.device),
masked_var,
)
masked_std = torch.sqrt(masked_var)
return masked_mean, masked_std
def _shift_padded_seq(mask: torch.Tensor, seq: torch.Tensor) -> torch.Tensor:
"""Shifts rows of seq based on the first 0 in each row of the mask.
Args:
mask: mask tensor of shape [B, N]
seq: seq tensor of shape [B, N, P]
Returns:
Returns the shifted sequence.
"""
batch_size, num_seq, feature_dim = seq.shape
new_mask: torch.BoolTensor = mask == 0
# Use argmax to find the first True value in each row
indices = new_mask.to(torch.int32).argmax(dim=1)
# Handle rows with all zeros
indices[~new_mask.any(dim=1)] = -1
# Create index ranges for each sequence in the batch
idx_range = (torch.arange(num_seq).to(
seq.device).unsqueeze(0).unsqueeze(-1).expand(batch_size, -1,
feature_dim))
# Calculate shifted indices for each element in each sequence
shifted_idx = (idx_range - indices[:, None, None]) % num_seq
# Gather values from seq using shifted indices
shifted_seq = seq.gather(1, shifted_idx)
return shifted_seq
def get_large_negative_number(dtype: torch.dtype) -> torch.Tensor:
"""Returns a large negative value for the given dtype."""
if dtype.is_floating_point:
dtype_max = torch.finfo(dtype).max
else:
dtype_max = torch.iinfo(dtype).max
return torch.tensor(-0.7 * dtype_max, dtype=dtype)
def apply_mask_to_logits(logits: torch.Tensor,
mask: torch.Tensor) -> torch.Tensor:
"""Applies a floating-point mask to a set of logits.
Args:
logits: A torch.Tensor of logit values.
mask: A torch.Tensor (float32) of mask values with the encoding described
in the function documentation.
Returns:
Masked logits.
"""
min_value = get_large_negative_number(logits.dtype)
return torch.where((mask >= min_value * 0.5), logits, min_value)
def convert_paddings_to_mask(
paddings: torch.Tensor, dtype: torch.dtype = torch.float32) -> torch.Tensor:
"""Converts binary paddings to a logit mask ready to add to attention matrix.
Args:
paddings: binary torch.Tensor of shape [B, T], with 1 denoting padding
token.
dtype: data type of the input.
Returns:
A torch.Tensor of shape [B, 1, 1, T] ready to add to attention logits.
"""
attention_mask = paddings.detach().clone()
attention_mask = attention_mask[:, None, None, :] # Equivalent to jnp.newaxis
attention_mask *= get_large_negative_number(dtype)
return attention_mask
def causal_mask(input_t: torch.Tensor) -> torch.Tensor:
"""Computes and returns causal mask.
Args:
input_t: A torch.Tensor of shape [B, T, D].
Returns:
An attention_mask torch.Tensor of shape [1, 1, T, T]. Attention mask has
already been converted to large negative values.
"""
assert input_t.dtype.is_floating_point, input_t.dtype
large_negative_number = get_large_negative_number(input_t.dtype)
t = input_t.shape[1]
col_idx = torch.arange(t).unsqueeze(0).repeat(t, 1)
row_idx = torch.arange(t).unsqueeze(1).repeat(1, t)
mask = (row_idx < col_idx).to(input_t.dtype) * large_negative_number
return (mask.unsqueeze(0).unsqueeze(0).to(input_t.device)
) # Equivalent to jnp.newaxis
def merge_masks(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""Merges 2 masks.
logscale mask is expected but 0/1 mask is also fine.
Args:
a: torch.Tensor of shape [1|B, 1, 1|T, S].
b: torch.Tensor of shape [1|B, 1, 1|T, S].
Returns:
torch.Tensor of shape [1|B, 1, 1|T, S].
"""
def expand_t(key_mask):
query_mask = key_mask.transpose(-1, -2) # Equivalent of jnp.transpose
return torch.minimum(query_mask, key_mask)
if a.shape[2] != b.shape[2]:
if a.shape[2] == 1:
a = expand_t(a)
else:
assert b.shape[2] == 1
b = expand_t(b)
assert a.shape[1:] == b.shape[1:], f"a.shape={a.shape}, b.shape={b.shape}."
return torch.minimum(a, b) # Element-wise minimum, similar to jnp.minimum
class ResidualBlock(nn.Module):
"""TimesFM residual block."""
def __init__(
self,
input_dims,
hidden_dims,
output_dims,
):
super(ResidualBlock, self).__init__()
self.input_dims = input_dims
self.hidden_dims = hidden_dims
self.output_dims = output_dims
# Hidden Layer
self.hidden_layer = nn.Sequential(
nn.Linear(input_dims, hidden_dims),
nn.SiLU(),
)
# Output Layer
self.output_layer = nn.Linear(hidden_dims, output_dims)
# Residual Layer
self.residual_layer = nn.Linear(input_dims, output_dims)
def forward(self, x):
hidden = self.hidden_layer(x)
output = self.output_layer(hidden)
residual = self.residual_layer(x)
return output + residual
class RMSNorm(torch.nn.Module):
"""Pax rms norm in pytorch."""
def __init__(
self,
dim: int,
eps: float = 1e-6,
add_unit_offset: bool = False,
):
super().__init__()
self.eps = eps
self.add_unit_offset = add_unit_offset
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
if self.add_unit_offset:
output = output * (1 + self.weight.float())
else:
output = output * self.weight.float()
return output.type_as(x)
class TransformerMLP(nn.Module):
"""Pax transformer MLP in pytorch."""
def __init__(
self,
hidden_size: int,
intermediate_size: int,
):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size)
self.down_proj = nn.Linear(intermediate_size, hidden_size)
self.layer_norm = nn.LayerNorm(normalized_shape=hidden_size, eps=1e-6)
def forward(self, x, paddings=None):
gate_inp = self.layer_norm(x)
gate = self.gate_proj(gate_inp)
gate = F.relu(gate)
outputs = self.down_proj(gate)
if paddings is not None:
outputs = outputs * (1.0 - paddings[:, :, None])
return outputs + x
class TimesFMAttention(nn.Module):
"""Implements the attention used in TimesFM."""
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
):
super().__init__()
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.hidden_size = hidden_size
self.head_dim = head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = nn.Parameter(
torch.empty((self.head_dim,), dtype=torch.float32),)
self.qkv_proj = nn.Linear(
self.hidden_size,
(self.num_heads + 2 * self.num_kv_heads) * self.head_dim,
)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size)
def _per_dim_scaling(self, query: torch.Tensor) -> torch.Tensor:
# [batch_size, n_local_heads, input_len, head_dim]
r_softplus_0 = 1.442695041
softplus_func = torch.nn.Softplus()
scale = r_softplus_0 / math.sqrt(self.head_dim)
scale = scale * softplus_func(self.scaling)
return query * scale[None, None, None, :]
def forward(
self,
hidden_states: torch.Tensor,
mask: torch.Tensor,
kv_write_indices: torch.Tensor | None = None,
kv_cache: Tuple[torch.Tensor, torch.Tensor] | None = None,
) -> torch.Tensor:
hidden_states_shape = hidden_states.shape
assert len(hidden_states_shape) == 3
batch_size, input_len, _ = hidden_states_shape
qkv = self.qkv_proj(hidden_states)
xq, xk, xv = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
xq = xq.view(batch_size, -1, self.num_heads, self.head_dim)
xk = xk.view(batch_size, -1, self.num_kv_heads, self.head_dim)
xv = xv.view(batch_size, -1, self.num_kv_heads, self.head_dim)
xq = self._per_dim_scaling(xq)
# Write new kv cache.
# [batch_size, input_len, n_local_kv_heads, head_dim]
if kv_cache is not None and kv_write_indices is not None:
k_cache, v_cache = kv_cache
k_cache.index_copy_(1, kv_write_indices, xk)
v_cache.index_copy_(1, kv_write_indices, xv)
key = k_cache
value = v_cache
else:
key = xk
value = xv
if self.num_kv_heads != self.num_heads:
# [batch_size, max_seq_len, n_local_heads, head_dim]
key = torch.repeat_interleave(key, self.num_queries_per_kv, dim=2)
value = torch.repeat_interleave(value, self.num_queries_per_kv, dim=2)
# [batch_size, n_local_heads, input_len, head_dim]
q = xq.transpose(1, 2)
# [batch_size, n_local_heads, max_seq_len, head_dim]
k = key.transpose(1, 2)
v = value.transpose(1, 2)
# [batch_size, n_local_heads, input_len, max_seq_len]
scores = torch.matmul(q, k.transpose(2, 3))
scores = scores + mask
scores = F.softmax(scores.float(), dim=-1).type_as(q)
# [batch_size, n_local_heads, input_len, head_dim]
output = torch.matmul(scores, v)
# return scores, output.transpose(1, 2).contiguous()
# [batch_size, input_len, hidden_dim]
output = output.transpose(1, 2).contiguous().view(batch_size, input_len, -1)
output = self.o_proj(output)
return scores, output
class TimesFMDecoderLayer(nn.Module):
"""Transformer layer."""
def __init__(
self,
hidden_size: int,
intermediate_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
rms_norm_eps: float = 1e-6,
):
super().__init__()
self.self_attn = TimesFMAttention(
hidden_size=hidden_size,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
head_dim=head_dim,
)
self.mlp = TransformerMLP(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
)
self.input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
mask: torch.Tensor,
paddings: torch.Tensor,
kv_write_indices: torch.Tensor | None = None,
kv_cache: Tuple[torch.Tensor, torch.Tensor] | None = None,
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
scores, hidden_states = self.self_attn(
hidden_states=hidden_states,
mask=mask,
kv_write_indices=kv_write_indices,
kv_cache=kv_cache,
)
hidden_states = residual + hidden_states
# MLP
hidden_states = self.mlp(hidden_states, paddings=paddings)
return scores, hidden_states
class StackedDecoder(nn.Module):
"""Stacked transformer layer."""
def __init__(
self,
hidden_size: int,
intermediate_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
num_layers: int,
rms_norm_eps: float = 1e-6,
):
super().__init__()
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(
TimesFMDecoderLayer(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
head_dim=head_dim,
rms_norm_eps=rms_norm_eps,
))
def forward(
self,
hidden_states: torch.Tensor,
paddings: torch.Tensor,
kv_write_indices: torch.Tensor | None = None,
kv_caches: List[Tuple[torch.Tensor, torch.Tensor]] | None = None,
) -> torch.Tensor:
padding_mask = convert_paddings_to_mask(paddings, hidden_states.dtype)
atten_mask = causal_mask(hidden_states)
mask = merge_masks(padding_mask, atten_mask)
for i in range(len(self.layers)):
layer = self.layers[i]
kv_cache = kv_caches[i] if kv_caches is not None else None
_, hidden_states = layer(
hidden_states=hidden_states,
mask=mask,
paddings=paddings,
kv_write_indices=kv_write_indices,
kv_cache=kv_cache,
)
return hidden_states
class PositionalEmbedding(torch.nn.Module):
"""Generates position embedding for a given 1-d sequence.
Attributes:
min_timescale: Start of the geometric index. Determines the periodicity of
the added signal.
max_timescale: End of the geometric index. Determines the frequency of the
added signal.
embedding_dims: Dimension of the embedding to be generated.
"""
def __init__(
self,
embedding_dims: int,
min_timescale: int = 1,
max_timescale: int = 10_000,
) -> None:
super().__init__()
self.min_timescale = min_timescale
self.max_timescale = max_timescale
self.embedding_dims = embedding_dims
def forward(self, seq_length=None, position=None):
"""Generates a Tensor of sinusoids with different frequencies.
Args:
seq_length: an optional Python int defining the output sequence length.
if the `position` argument is specified.
position: [B, seq_length], optional position for each token in the
sequence, only required when the sequence is packed.
Returns:
[B, seqlen, D] if `position` is specified, else [1, seqlen, D]
"""
if position is None:
assert seq_length is not None
# [1, seqlen]
position = torch.arange(seq_length, dtype=torch.float32).unsqueeze(0)
else:
assert position.ndim == 2, position.shape
num_timescales = self.embedding_dims // 2
log_timescale_increment = math.log(
float(self.max_timescale) / float(self.min_timescale)) / max(
num_timescales - 1, 1)
inv_timescales = self.min_timescale * torch.exp(
torch.arange(num_timescales, dtype=torch.float32) *
-log_timescale_increment)
scaled_time = position.unsqueeze(2) * inv_timescales.unsqueeze(0).unsqueeze(
0)
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2)
# Padding to ensure correct embedding dimension
signal = F.pad(signal, (0, 0, 0, self.embedding_dims % 2))
return signal
class PatchedTimeSeriesDecoder(nn.Module):
"""Patched time-series decoder."""
def __init__(self, config: TimesFMConfig):
super().__init__()
self.config = config
self.input_ff_layer = ResidualBlock(
input_dims=2 * config.patch_len,
output_dims=config.hidden_size,
hidden_dims=config.intermediate_size,
)
self.freq_emb = nn.Embedding(num_embeddings=3,
embedding_dim=config.hidden_size)
self.horizon_ff_layer = ResidualBlock(
input_dims=config.hidden_size,
output_dims=config.horizon_len * (1 + len(config.quantiles)),
hidden_dims=config.intermediate_size,
)
self.stacked_transformer = StackedDecoder(
hidden_size=self.config.hidden_size,
intermediate_size=self.config.intermediate_size,
num_heads=self.config.num_heads,
num_kv_heads=self.config.num_kv_heads,
head_dim=self.config.head_dim,
num_layers=self.config.num_layers,
rms_norm_eps=self.config.rms_norm_eps,
)
if self.config.use_positional_embedding:
self.position_emb = PositionalEmbedding(self.config.hidden_size)
def _forward_transform(
self, inputs: torch.Tensor, patched_pads: torch.Tensor
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
"""Input is of shape [B, N, P]."""
mu, sigma = _masked_mean_std(inputs, patched_pads)
sigma = torch.where(
sigma < self.config.tolerance,
torch.tensor(1.0, dtype=sigma.dtype, device=sigma.device),
sigma,
)
# Normalize each patch
outputs = (inputs - mu[:, None, None]) / sigma[:, None, None]
outputs = torch.where(
torch.abs(inputs - self.config.pad_val) < self.config.tolerance,
torch.tensor(self.config.pad_val,
dtype=outputs.dtype,
device=outputs.device),
outputs,
)
return outputs, (mu, sigma)
def _reverse_transform(
self, outputs: torch.Tensor, stats: tuple[torch.Tensor,
torch.Tensor]) -> torch.Tensor:
"""Output is of shape [B, N, P, Q]."""
mu, sigma = stats
return outputs * sigma[:, None, None, None] + mu[:, None, None, None]
def _preprocess_input(
self,
input_ts: torch.Tensor,
input_padding: torch.Tensor,
) -> tuple[
torch.Tensor,
torch.Tensor,
tuple[torch.Tensor, torch.Tensor] | None,
torch.Tensor,
]:
"""Preprocess input for stacked transformer."""
# Reshape into patches (using view for efficiency)
bsize = input_ts.shape[0]
patched_inputs = input_ts.view(bsize, -1, self.config.patch_len)
patched_pads = input_padding.view(bsize, -1, self.config.patch_len)
patched_inputs = torch.where(
torch.abs(patched_pads - 1.0) < self.config.tolerance,
torch.tensor(0.0,
dtype=patched_inputs.dtype,
device=patched_inputs.device),
patched_inputs,
)
patched_pads = torch.where(
torch.abs(patched_inputs - self.config.pad_val) < self.config.tolerance,
torch.tensor(1.0, dtype=patched_pads.dtype, device=patched_pads.device),
patched_pads,
)
patched_inputs, stats = self._forward_transform(patched_inputs,
patched_pads)
# B x N x D
patched_inputs = patched_inputs * (1.0 - patched_pads)
concat_inputs = torch.cat([patched_inputs, patched_pads], dim=-1)
model_input = self.input_ff_layer(concat_inputs)
# A patch should not be padded even if there is at least one zero.
patched_padding = torch.min(patched_pads,
dim=-1)[0] # Get the values from the min result
if self.config.use_positional_embedding:
pos_emb = self.position_emb(model_input.shape[1]).to(model_input.device)
pos_emb = torch.concat([pos_emb] * model_input.shape[0], dim=0)
pos_emb = _shift_padded_seq(patched_padding, pos_emb)
model_input += pos_emb
return model_input, patched_padding, stats, patched_inputs
def _postprocess_output(
self,
model_output: torch.Tensor,
num_outputs: int,
stats: tuple[torch.Tensor, torch.Tensor],
) -> torch.Tensor:
"""Postprocess output of stacked transformer."""
# B x N x (H.Q)
output_ts = self.horizon_ff_layer(model_output)
# Reshape using view
b, n, _ = output_ts.shape
output_ts = output_ts.view(b, n, self.config.horizon_len, num_outputs)
return self._reverse_transform(output_ts, stats)
def forward(
self,
input_ts: torch.Tensor,
input_padding: torch.LongTensor,
freq: torch.Tensor,
) -> torch.Tensor:
num_outputs = len(self.config.quantiles) + 1
model_input, patched_padding, stats, _ = self._preprocess_input(
input_ts=input_ts,
input_padding=input_padding,
)
f_emb = self.freq_emb(freq) # B x 1 x D
model_input += f_emb
model_output = self.stacked_transformer(model_input, patched_padding)
output_ts = self._postprocess_output(model_output, num_outputs, stats)
return output_ts
def decode(
self,
input_ts: torch.Tensor,
paddings: torch.Tensor,
freq: torch.LongTensor,
horizon_len: int,
output_patch_len: int | None = None,
max_len: int = 512,
return_forecast_on_context: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Auto-regressive decoding without caching.
Args:
input_ts: input time-series and paddings. Time-series shape B x C.
paddings: padding shape B x (C + H) where H is the prediction length.
freq: frequency shape B x 1
horizon_len: prediction length.
output_patch_len: output length to be fetched from one step of
auto-regressive decoding.
max_len: maximum training context length.
return_forecast_on_context: whether to return the model forecast on the
context except the first input patch.
Returns:
Tuple of two forecasting results:
- Point (mean) output predictions as a tensor with shape B x H'.
- Full predictions (mean and quantiles) as a tensor with shape
B x H' x (1 + # quantiles).
In particular, if return_forecast_on_context is True, H' is H plus
the forecastable context length, i.e. context_len - (first) patch_len.
"""
final_out = input_ts
context_len = final_out.shape[1]
full_outputs = []
if paddings.shape[1] != final_out.shape[1] + horizon_len:
raise ValueError(
"Length of paddings must match length of input + horizon_len:"
f" {paddings.shape[1]} != {final_out.shape[1]} + {horizon_len}")
if output_patch_len is None:
output_patch_len = self.config.horizon_len
num_decode_patches = (horizon_len + output_patch_len -
1) // output_patch_len
for step_index in range(num_decode_patches):
current_padding = paddings[:, 0:final_out.shape[1]]
input_ts = final_out[:, -max_len:]
input_padding = current_padding[:, -max_len:]
fprop_outputs = self(input_ts, input_padding, freq)
if return_forecast_on_context and step_index == 0:
# For the first decodings step, collect the model forecast on the
# context except the unavailable first input batch forecast.
new_full_ts = fprop_outputs[:, :-1, :self.config.patch_len, :]
new_full_ts = fprop_outputs.view(new_full_ts.size(0), -1,
new_full_ts.size(3))
full_outputs.append(new_full_ts)
# (full batch, last patch, output_patch_len, index of mean forecast = 0)
new_ts = fprop_outputs[:, -1, :output_patch_len, 0]
new_full_ts = fprop_outputs[:, -1, :output_patch_len, :]
# (full batch, last patch, output_patch_len, all output indices)
full_outputs.append(new_full_ts)
final_out = torch.concatenate([final_out, new_ts], axis=-1)
if return_forecast_on_context:
# `full_outputs` indexing starts at after the first input patch.
full_outputs = torch.concatenate(
full_outputs,
axis=1)[:, :(context_len - self.config.patch_len + horizon_len), :]
else:
# `full_outputs` indexing starts at the forecast horizon.
full_outputs = torch.concatenate(full_outputs, axis=1)[:,
0:horizon_len, :]
return (full_outputs[:, :, 0], full_outputs)
class TimesFM(nn.Module):
def __init__(self, lookback: int = 512, lookahead: int = 96, context_len: int = 512):
super(TimesFM, self).__init__()
self.timesfm = PatchedTimeSeriesDecoder(TimesFMConfig())
self.lookback, self.lookahead = lookback, lookahead
self.context_len = context_len
def load_state_dict(self, state_dict, *args, **kwargs):
return self.timesfm.load_state_dict(state_dict, *args, **kwargs)
def state_dict(self, *args, **kwargs):
return self.timesfm.state_dict(*args, **kwargs)
def pad_tensor(self, x):
B, L = x.shape
device = x.device
dtype = x.dtype
if L < self.context_len:
padded_input = torch.zeros((B, self.context_len), device=device, dtype=dtype)
padded_input[:, -L:] = x
padding = torch.ones((B, self.context_len), device=device, dtype=dtype)
padding[:, -L:] = 0
else:
padded_input = x[:, -self.context_len:]
padding = torch.zeros((B, self.context_len), device=device, dtype=dtype)
freq = torch.zeros((B, 1), device=device, dtype=torch.long)
return padded_input, torch.cat((padding,torch.zeros((B,self.lookahead),device=device,dtype=dtype)),dim=-1), freq
def forward(self, x):
padded_inp, padding, freq = self.pad_tensor(x)
return self.timesfm.decode(padded_inp,padding,freq,self.lookahead)[0] # ignoring quantiles