human-disease-prediction
Try it on 🤗 Spaces
import joblib
import numpy
from huggingface_hub import hf_hub_download
model = joblib.load(
hf_hub_download("AWeirdDev/human-disease-prediction", "sklearn_model.joblib")
)
model.predict(
numpy.array([your_data])
)
The your_data
variable should be a vector of zeros and ones.
A zero means "False," and a one means "True."
Create a vector that pairs with the following symptoms, then the model will predict what disease it might be.
['itching',
'skin_rash',
'nodal_skin_eruptions',
'continuous_sneezing',
'shivering',
'chills',
'joint_pain',
'stomach_pain',
'acidity',
'ulcers_on_tongue',
'muscle_wasting',
'vomiting',
'burning_micturition',
'spotting_ urination',
'fatigue',
'weight_gain',
'anxiety',
'cold_hands_and_feets',
'mood_swings',
'weight_loss',
'restlessness',
'lethargy',
'patches_in_throat',
'irregular_sugar_level',
'cough',
'high_fever',
'sunken_eyes',
'breathlessness',
'sweating',
'dehydration',
'indigestion',
'headache',
'yellowish_skin',
'dark_urine',
'nausea',
'loss_of_appetite',
'pain_behind_the_eyes',
'back_pain',
'constipation',
'abdominal_pain',
'diarrhoea',
'mild_fever',
'yellow_urine',
'yellowing_of_eyes',
'acute_liver_failure',
'fluid_overload',
'swelling_of_stomach',
'swelled_lymph_nodes',
'malaise',
'blurred_and_distorted_vision',
'phlegm',
'throat_irritation',
'redness_of_eyes',
'sinus_pressure',
'runny_nose',
'congestion',
'chest_pain',
'weakness_in_limbs',
'fast_heart_rate',
'pain_during_bowel_movements',
'pain_in_anal_region',
'bloody_stool',
'irritation_in_anus',
'neck_pain',
'dizziness',
'cramps',
'bruising',
'obesity',
'swollen_legs',
'swollen_blood_vessels',
'puffy_face_and_eyes',
'enlarged_thyroid',
'brittle_nails',
'swollen_extremeties',
'excessive_hunger',
'extra_marital_contacts',
'drying_and_tingling_lips',
'slurred_speech',
'knee_pain',
'hip_joint_pain',
'muscle_weakness',
'stiff_neck',
'swelling_joints',
'movement_stiffness',
'spinning_movements',
'loss_of_balance',
'unsteadiness',
'weakness_of_one_body_side',
'loss_of_smell',
'bladder_discomfort',
'foul_smell_of urine',
'continuous_feel_of_urine',
'passage_of_gases',
'internal_itching',
'toxic_look_(typhos)',
'depression',
'irritability',
'muscle_pain',
'altered_sensorium',
'red_spots_over_body',
'belly_pain',
'abnormal_menstruation',
'dischromic _patches',
'watering_from_eyes',
'increased_appetite',
'polyuria',
'family_history',
'mucoid_sputum',
'rusty_sputum',
'lack_of_concentration',
'visual_disturbances',
'receiving_blood_transfusion',
'receiving_unsterile_injections',
'coma',
'stomach_bleeding',
'distention_of_abdomen',
'history_of_alcohol_consumption',
'fluid_overload.1',
'blood_in_sputum',
'prominent_veins_on_calf',
'palpitations',
'painful_walking',
'pus_filled_pimples',
'blackheads',
'scurring',
'skin_peeling',
'silver_like_dusting',
'small_dents_in_nails',
'inflammatory_nails',
'blister',
'red_sore_around_nose',
'yellow_crust_ooze']
Accuracy
It has been reported as 1.0
(100%), but I don't believe it.
- Downloads last month
- 67
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.