haLLawa4-7b
haLLawa4-7b is a merge of the following models using mergekit:
🧩 Configuration
```yaml models:
- model: eren23/ogno-monarch-jaskier-merge-7b
No parameters necessary for base model
- model: mlabonne/Monarch-7B #Emphasize the beginning of Vicuna format models parameters: weight: 0.5 density: 0.59
- model: paulml/OGNO-7B parameters: weight: 0.2 density: 0.55
Vicuna format
- model: AbacusResearch/haLLAwa3 parameters: weight: 0.3 density: 0.55
merge_method: dare_ties base_model: eren23/ogno-monarch-jaskier-merge-7b parameters: int8_mask: true dtype: bfloat16 random_seed: 0 ```
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.25 |
AI2 Reasoning Challenge (25-Shot) | 71.50 |
HellaSwag (10-Shot) | 88.36 |
MMLU (5-Shot) | 64.49 |
TruthfulQA (0-shot) | 74.27 |
Winogrande (5-shot) | 82.40 |
GSM8k (5-shot) | 70.51 |
- Downloads last month
- 73
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for AbacusResearch/haLLawa4-7b
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard71.500
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.360
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.490
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard74.270
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard82.400
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard70.510