File size: 3,022 Bytes
f4e579f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
from torch import nn





class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )
    def forward(self, x):
        return self.net(x)


   






class ContextualizerBlock(nn.Module):
    def __init__(self, d_model,d_ffn,dropout,num_tokens):
        super().__init__()
        
        self.context_mlp = FeedForward(d_model,d_ffn,dropout)
        self.mlp = FeedForward(d_model,d_ffn,dropout)     
        self.norm = nn.LayerNorm(d_model)       
        self.upsample = nn.Upsample(scale_factor=num_tokens,mode='nearest')
        self.downsample = nn.Upsample(scale_factor= 1/num_tokens, mode='nearest')
    def forward(self, x):
        res = x
        x = self.norm(x)
        
        context = x
        dim0 = context.shape[0]
        dim1 = context.shape[1]
        dim2 = context.shape[2]
        context = context.reshape([dim0,1,dim1*dim2])
        
        context = self.downsample(context)
        context = context.reshape([dim0,dim2])
        context = self.context_mlp(context)
        
        context = context.reshape([dim0,1,dim2])
        context = self.upsample(context)
        context = context.reshape([dim0,dim1,dim2]) 
        x = context
        x = x + res  
        res = x
        x = self.norm(x)
        x = self.mlp(x)
        out = x + res
        return out 
        return
 
 
class MixerGatingUnit(nn.Module):
    def __init__(self,d_model,d_ffn,dropout,num_tokens):
        super().__init__()     
        self.Mixer = ContextualizerBlock(d_model,d_ffn,dropout,num_tokens)
        self.proj = nn.Linear(d_model,d_model)

    def forward(self, x):
        u, v = x, x 
        u = self.proj(u)  
        v = self.Mixer(v)
        out = u * v
        return out


class ContextualizerNiNBlock(nn.Module):
    def __init__(self, d_model,d_ffn,dropout,num_tokens):
        super().__init__()
       
        self.norm = nn.LayerNorm(d_model)       
        self.mgu = MixerGatingUnit(d_model,d_ffn,dropout,num_tokens)
        self.ffn = FeedForward(d_model,d_ffn,dropout)
    def forward(self, x):
        residual = x
        x = self.norm(x)
        x = self.mgu(x)   
        x = x + residual      
        residual = x
        x = self.norm(x)
        x = self.ffn(x)
        out = x + residual
        return out
    
class ContextualizerNiN(nn.Module):
    def __init__(self, d_model, d_ffn, num_layers,dropout,num_tokens):
        super().__init__()
        
        self.model = nn.Sequential(
            
            *[ContextualizerNiNBlock(d_model,d_ffn,dropout,num_tokens) for _ in range(num_layers)],
            
            
        )

    def forward(self, x):
        
        x = self.model(x)
        
        return x