File size: 5,819 Bytes
f4e579f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#imports

import os
import csv
import torch
from torch import nn 
from torch.utils.data import DataLoader 
from torchvision import datasets 
from torchvision.transforms import ToTensor, Normalize, RandomCrop, RandomHorizontalFlip, Compose 
from contextualizer_mlp import Contextualizer

# data transforms

transform = Compose([
RandomCrop(32, padding=4),
RandomHorizontalFlip(), 
ToTensor(),
Normalize((0.5, 0.5,0.5),(0.5, 0.5,0.5))

])

training_data = datasets.CIFAR10(
                                       root='data',
                                       train=True,
                                       download=True,
                                       transform=transform 
                                       )

test_data = datasets.CIFAR10(
                                       root='data',
                                       train=False,
                                       download=True,
                                       transform=transform 
                                       )                                       
# create dataloaders  
                                     
batch_size = 128

train_dataloader = DataLoader(training_data, batch_size=batch_size,shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=batch_size)


for X, y in test_dataloader:
    print(f"Shape of X [N,C,H,W]:{X.shape}")
    print(f"Shape of y:{y.shape}{y.dtype}")
    break

# size checking for loading images
def check_sizes(image_size, patch_size):
    sqrt_num_patches, remainder = divmod(image_size, patch_size)
    assert remainder == 0, "`image_size` must be divisibe by `patch_size`"
    num_patches = sqrt_num_patches ** 2
    return num_patches



# create model
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"

print(f"using {device} device") 

# model definition

class ContextualizerImageClassification(Contextualizer):
    def __init__(
        self,
        image_size=32,
        patch_size=4,
        in_channels=3,
        num_classes=10,
        d_ffn=512,
        d_model = 256,
        num_tokens = 64,
        num_layers=4,
        dropout=0.5
    ):
        num_patches = check_sizes(image_size, patch_size)
        super().__init__(d_model,d_ffn,num_layers,dropout, num_tokens)
        self.patcher = nn.Conv2d(
            in_channels, d_model, kernel_size=patch_size, stride=patch_size
        )
        self.classifier = nn.Linear(d_model, num_classes)

    def forward(self, x):
        
        patches = self.patcher(x)
        batch_size, num_channels, _, _ = patches.shape
        patches = patches.permute(0, 2, 3, 1)
        patches = patches.view(batch_size, -1, num_channels)
        embedding = self.model(patches)
        embedding = embedding.mean(dim=1) # global average pooling
        out = self.classifier(embedding)
        return out

model = ContextualizerImageClassification().to(device)
print(model)

# Optimizer

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=1e-3)


# Training Loop

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.train()
    train_loss = 0
    correct = 0
    for batch, (X,y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)
       
        #compute prediction error
        pred = model(X)
        loss = loss_fn(pred,y)
        
        # backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_loss += loss.item()
        _, labels = torch.max(pred.data, 1)
        correct += labels.eq(y.data).type(torch.float).sum()

        


        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}   [{current:>5d}/{size:>5d}]")

    train_loss /= num_batches
    train_accuracy = 100. * correct.item() / size
    print(train_accuracy)
    return train_loss,train_accuracy 



# Test loop

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)            
    num_batches = len(dataloader)
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for X,y in dataloader:
            X,y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")  
    test_accuracy = 100*correct      
    return test_loss, test_accuracy



# apply train and test

logname = "/PATH/Contextualizer_mlp/Experiments_cifar10/logs_contextualizer/logs_cifar10.csv"
if not os.path.exists(logname):
  with open(logname, 'w') as logfile:
    logwriter = csv.writer(logfile, delimiter=',')
    logwriter.writerow(['epoch', 'train loss', 'train acc',
                        'test loss', 'test acc'])


epochs = 100
for epoch in range(epochs):
    print(f"Epoch {epoch+1}\n-----------------------------------")
    train_loss, train_acc = train(train_dataloader, model, loss_fn, optimizer)
    # learning rate scheduler
    #if scheduler is not None:
    #    scheduler.step()
    test_loss, test_acc = test(test_dataloader, model, loss_fn)
    with open(logname, 'a') as logfile:
        logwriter = csv.writer(logfile, delimiter=',')
        logwriter.writerow([epoch+1, train_loss, train_acc,
                            test_loss, test_acc])
print("Done!")

# saving trained model

path = "/PATH/Contextualizer_mlp/Experiments_cifar10/weights_contextualizer"
model_name = "ContextualizerImageClassification_cifar10"
torch.save(model.state_dict(), f"{path}/{model_name}.pth")
print(f"Saved Model State to {path}/{model_name}.pth ")