Edit model card

zephyr-7b-dpo-lora

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5874
  • Rewards/chosen: 0.0339
  • Rewards/rejected: -0.3006
  • Rewards/accuracies: 0.6920
  • Rewards/margins: 0.3345
  • Logps/rejected: -220.4644
  • Logps/chosen: -263.6834
  • Logits/rejected: -2.2601
  • Logits/chosen: -2.3604

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 256
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6259 1.0 242 0.6261 0.0706 -0.0990 0.6700 0.1696 -218.4478 -263.3158 -2.2669 -2.3669
0.5991 2.0 484 0.5946 0.0494 -0.2508 0.6780 0.3002 -219.9661 -263.5286 -2.2620 -2.3623
0.5852 3.0 726 0.5874 0.0339 -0.3006 0.6920 0.3345 -220.4644 -263.6834 -2.2601 -2.3604

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Abe13/zephyr-7b-dpo-lora

Finetuned
(690)
this model