|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- FreedomIntelligence/ALLaVA-4V |
|
- Vision-Flan/vision-flan_191-task_1k |
|
language: |
|
- en |
|
base_model: |
|
- Lin-Chen/open-llava-next-llama3-8b |
|
--- |
|
# Adapting Multimodal Large Language Models to Domains via Post-Training |
|
|
|
This repos contains the **visual-instruction synthesizer** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930). |
|
|
|
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md) |
|
|
|
We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation. |
|
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.** |
|
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training. |
|
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks. |
|
|
|
<p align='left'> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png" width="1000"> |
|
</p> |
|
|
|
## Resources |
|
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗** |
|
|
|
| Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark | |
|
|:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------| |
|
| [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - | |
|
| [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) | |
|
| [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) | |
|
| [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) | |
|
| [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) | |
|
| [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) | |
|
| [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) | |
|
|
|
**Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer) |
|
|
|
### 1. Basic Usage: Synthesize a task triplet based on a given image-caption pair |
|
To synthesize an "instruction-informative response-precise response" triplet based on the following image-caption pair. |
|
|
|
<p align='left'> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/mgI_Ayj12_Q_kviWvfAVb.jpeg" width="200"> |
|
</p> |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration |
|
import torch |
|
from PIL import Image |
|
import requests |
|
|
|
# Define your input image-caption pair here: |
|
## image |
|
url = "https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/mgI_Ayj12_Q_kviWvfAVb.jpeg" |
|
image = Image.open(requests.get(url, stream=True).raw).convert("RGB") |
|
|
|
## Caption |
|
caption = "Dish: Strawberry Waffles\n\nSteps to prepare:\na). Preheat and grease a waffle iron according to manufacturer's instructions.\nb). Sift flour, baking powder, and salt together in a bowl. Whisk buttermilk, yogurt, butter, eggs, and sugar together in a separate bowl; stir into flour mixture until batter is smooth. Fold strawberries into batter.\nc). Pour about 1/3 cup batter into preheated waffle iron; cook until lightly browned, 5 to 7 minutes. Repeat with remaining batter.\n\nIngredients you'll need:\n(a). 2 1/2 cups all-purpose flour\n(b). 4 teaspoons baking powder\n(c). 3/4 teaspoon salt\n(d). 2 cups buttermilk\n(e). 1/2 cup vanilla Greek-style yogurt\n(f). 1/2 cup butter, melted\n(g). 2 eggs, beaten\n(h). 1 1/2 tablespoons white sugar\n(i). 3/4 cup chopped strawberries, or more to taste" |
|
|
|
# =========================== Do NOT need to modify the following =============================== |
|
|
|
# Path to synthesizer |
|
model_path = "AdaptLLM/visual-instruction-synthesizer" |
|
|
|
# Prompt Hints |
|
caption_hint = "Describe the image." |
|
precise_hint = "Answer with a precise response.\n" |
|
informative_hint = "Answer with an informative response.\n" |
|
|
|
# Function to parse predictions |
|
def parse_pred(pred): |
|
if not pred.endswith("<|end_of_text|>"): |
|
return [] |
|
|
|
pred = pred[:-len("<|end_of_text|>")] |
|
|
|
QA_str_list = pred.split("<|start_header_id|>user<|end_header_id|>\n\n") |
|
if not pred.endswith("<|eot_id|>"): |
|
QA_str_list = QA_str_list[:-1] |
|
|
|
QA_list = [] |
|
for QA_str in QA_str_list: |
|
try: |
|
assert "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" in QA_str |
|
Q_str, A_str = QA_str.split("<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n") |
|
Q_str, A_str = Q_str.strip(), A_str[:-len("<|eot_id|>")].strip() |
|
assert Q_str and A_str |
|
QA_list.append({"Q": Q_str, "A": A_str}) |
|
except AssertionError: |
|
pass # Skip invalid entries |
|
|
|
conversations = [] |
|
for qa_entry in QA_list: |
|
conversations.append({"from": "human", "value": qa_entry["Q"]}) |
|
conversations.append({"from": "gpt", "value": qa_entry["A"]}) |
|
return conversations |
|
|
|
# Function to extract task triplets |
|
def get_task_triplet(pred): |
|
pred_QAs = parse_pred(pred) |
|
precise_QAs = {} |
|
informative_QAs = {} |
|
collected_QA = None |
|
|
|
for idx in range(0, len(pred_QAs), 2): # Iterate over question-answer pairs |
|
question = pred_QAs[idx]["value"] |
|
answer = pred_QAs[idx + 1]["value"] |
|
if question.startswith(precise_hint): |
|
precise_q = question[len(precise_hint):] |
|
if precise_q in informative_QAs: |
|
collected_QA = { |
|
"Q": precise_q, |
|
"precise_A": answer, |
|
"informative_A": informative_QAs[precise_q], |
|
} |
|
break |
|
else: |
|
precise_QAs[precise_q] = answer |
|
elif question.startswith(informative_hint): |
|
informative_q = question[len(informative_hint):] |
|
if informative_q in precise_QAs: |
|
collected_QA = { |
|
"Q": informative_q, |
|
"precise_A": precise_QAs[informative_q], |
|
"informative_A": answer, |
|
} |
|
break |
|
else: |
|
informative_QAs[informative_q] = answer |
|
|
|
return collected_QA |
|
|
|
# Load the processor |
|
processor = LlavaNextProcessor.from_pretrained(model_path) |
|
|
|
# Define image token |
|
image_token = "<|reserved_special_token_4|>" |
|
|
|
# Format the prompt |
|
prompt = ( |
|
f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n" |
|
f"You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." |
|
f"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n" |
|
f"{image_token}\n{caption_hint}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" |
|
f"{caption}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n" |
|
) |
|
|
|
# Load the model |
|
model = LlavaNextForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16, device_map="auto") |
|
|
|
# Prepare inputs and generate output |
|
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device) |
|
answer_start = int(inputs["input_ids"].shape[-1]) |
|
output = model.generate(**inputs, max_new_tokens=512) |
|
|
|
# Decode predictions |
|
pred = processor.decode(output[0][answer_start:], skip_special_tokens=False) |
|
print(f"## Synthesizer predictions:\n{pred}") |
|
|
|
# Extract task triplets |
|
task_triplet = get_task_triplet(pred) |
|
print(f"## Synthesized Task triplet:\n{task_triplet}") |
|
``` |
|
</details> |
|
|
|
### 2. Advanced Usage: Convert Image-Caption Pairs into Visual Instructions at Scale |
|
The following steps show how to convert your own data into visual instructions for post-training MLLMs. |
|
|
|
We leverage vLLM to accelerate the synthesis process. On a single A100-80GB GPU, it takes about 12.5 hours to convert 100K image-caption pairs. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
### 1) Setup |
|
Install vLLM using `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source). |
|
```bash |
|
pip install vllm |
|
``` |
|
|
|
Clone our code repository and navigate to the inference directory: |
|
```bash |
|
git clone https://github.com/bigai-ai/QA-Synthesizer.git |
|
cd QA-Synthesizer/vllm_inference |
|
SYNTHESIZER=AdaptLLM/visual-instruction-synthesizer |
|
CONSISTENCY_CHECKER=meta-llama/Meta-Llama-3-8B # Language model for consistency checks |
|
``` |
|
|
|
### 2) Prepare Your Image-Caption Pairs |
|
Format your `image_caption_pairs` file to match the following structure (similar to ShareGPT), or you can use our [data_samples/image_caption_pairs.json](https://github.com/bigai-ai/QA-Synthesizer/blob/main/data_samples/image_caption_pairs.json) for a quick try. |
|
|
|
```json |
|
[ |
|
{ |
|
"images": ["image_xxx.jpg"], |
|
"messages": [ |
|
{ |
|
"content": "<image>instruction", |
|
"role": "user" |
|
}, |
|
{ |
|
"content": "response", |
|
"role": "assistant" |
|
} |
|
] |
|
}, |
|
... |
|
] |
|
``` |
|
|
|
### 3) Run Synthesis |
|
|
|
The following command generate task triplets using the synthesizer and apply consistency-based filtering to enhance data quality: |
|
|
|
```bash |
|
IMAGE_CAPTION='../data_samples/image_caption_pairs.json' # Path to image-caption pairs |
|
IMAGE_FOLDER='../data_samples/images' # Path to the image folder |
|
OUTPUT_DIR='../data_samples/' # Output directory for synthesized data |
|
|
|
# Run synthesis with data parallelism; adjust CUDA devices as needed: |
|
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_synthesis.sh ${SYNTHESIZER} ${CONSISTENCY_CHECKER} ${IMAGE_CAPTION} ${IMAGE_FOLDER} ${OUTPUT_DIR} |
|
``` |
|
|
|
The synthesized output will be saved at: |
|
```bash |
|
${OUTPUT_DIR}/image_caption_and_synthetic_task.json |
|
``` |
|
|
|
This output can be directly utilized for single-stage post-training with code repo like [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory). |
|
|
|
</details> |
|
|
|
|
|
## Citation |
|
If you find our work helpful, please cite us. |
|
|
|
AdaMLLM |
|
```bibtex |
|
@article{adamllm, |
|
title={On Domain-Specific Post-Training for Multimodal Large Language Models}, |
|
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang}, |
|
journal={arXiv preprint arXiv:2411.19930}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
[Instruction Pre-Training](https://huggingface.co/papers/2406.14491) (EMNLP 2024) |
|
```bibtex |
|
@article{cheng2024instruction, |
|
title={Instruction Pre-Training: Language Models are Supervised Multitask Learners}, |
|
author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu}, |
|
journal={arXiv preprint arXiv:2406.14491}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024) |
|
```bibtex |
|
@inproceedings{ |
|
cheng2024adapting, |
|
title={Adapting Large Language Models via Reading Comprehension}, |
|
author={Daixuan Cheng and Shaohan Huang and Furu Wei}, |
|
booktitle={The Twelfth International Conference on Learning Representations}, |
|
year={2024}, |
|
url={https://openreview.net/forum?id=y886UXPEZ0} |
|
} |
|
``` |