Safetensors
English
llava_next
AdaptLLM's picture
Update README.md
623d557 verified
|
raw
history blame
14 kB
---
license: apache-2.0
datasets:
- FreedomIntelligence/ALLaVA-4V
- Vision-Flan/vision-flan_191-task_1k
language:
- en
base_model:
- Lin-Chen/open-llava-next-llama3-8b
---
# Adapting Multimodal Large Language Models to Domains via Post-Training
This repos contains the **visual-instruction synthesizer** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png" width="1000">
</p>
## Resources
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
| Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark |
|:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
| [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - |
| [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
| [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
| [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
**Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
### 1. Basic Usage: Synthesize a task triplet based on a given image-caption pair
To synthesize an "instruction-informative response-precise response" triplet based on the following image-caption pair.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/mgI_Ayj12_Q_kviWvfAVb.jpeg" width="200">
</p>
<details>
<summary> Click to expand </summary>
```python
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch
from PIL import Image
import requests
# Define your input image-caption pair here:
## image
url = "https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/mgI_Ayj12_Q_kviWvfAVb.jpeg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
## Caption
caption = "Dish: Strawberry Waffles\n\nSteps to prepare:\na). Preheat and grease a waffle iron according to manufacturer's instructions.\nb). Sift flour, baking powder, and salt together in a bowl. Whisk buttermilk, yogurt, butter, eggs, and sugar together in a separate bowl; stir into flour mixture until batter is smooth. Fold strawberries into batter.\nc). Pour about 1/3 cup batter into preheated waffle iron; cook until lightly browned, 5 to 7 minutes. Repeat with remaining batter.\n\nIngredients you'll need:\n(a). 2 1/2 cups all-purpose flour\n(b). 4 teaspoons baking powder\n(c). 3/4 teaspoon salt\n(d). 2 cups buttermilk\n(e). 1/2 cup vanilla Greek-style yogurt\n(f). 1/2 cup butter, melted\n(g). 2 eggs, beaten\n(h). 1 1/2 tablespoons white sugar\n(i). 3/4 cup chopped strawberries, or more to taste"
# =========================== Do NOT need to modify the following ===============================
# Path to synthesizer
model_path = "AdaptLLM/visual-instruction-synthesizer"
# Prompt Hints
caption_hint = "Describe the image."
precise_hint = "Answer with a precise response.\n"
informative_hint = "Answer with an informative response.\n"
# Function to parse predictions
def parse_pred(pred):
if not pred.endswith("<|end_of_text|>"):
return []
pred = pred[:-len("<|end_of_text|>")]
QA_str_list = pred.split("<|start_header_id|>user<|end_header_id|>\n\n")
if not pred.endswith("<|eot_id|>"):
QA_str_list = QA_str_list[:-1]
QA_list = []
for QA_str in QA_str_list:
try:
assert "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" in QA_str
Q_str, A_str = QA_str.split("<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n")
Q_str, A_str = Q_str.strip(), A_str[:-len("<|eot_id|>")].strip()
assert Q_str and A_str
QA_list.append({"Q": Q_str, "A": A_str})
except AssertionError:
pass # Skip invalid entries
conversations = []
for qa_entry in QA_list:
conversations.append({"from": "human", "value": qa_entry["Q"]})
conversations.append({"from": "gpt", "value": qa_entry["A"]})
return conversations
# Function to extract task triplets
def get_task_triplet(pred):
pred_QAs = parse_pred(pred)
precise_QAs = {}
informative_QAs = {}
collected_QA = None
for idx in range(0, len(pred_QAs), 2): # Iterate over question-answer pairs
question = pred_QAs[idx]["value"]
answer = pred_QAs[idx + 1]["value"]
if question.startswith(precise_hint):
precise_q = question[len(precise_hint):]
if precise_q in informative_QAs:
collected_QA = {
"Q": precise_q,
"precise_A": answer,
"informative_A": informative_QAs[precise_q],
}
break
else:
precise_QAs[precise_q] = answer
elif question.startswith(informative_hint):
informative_q = question[len(informative_hint):]
if informative_q in precise_QAs:
collected_QA = {
"Q": informative_q,
"precise_A": precise_QAs[informative_q],
"informative_A": answer,
}
break
else:
informative_QAs[informative_q] = answer
return collected_QA
# Load the processor
processor = LlavaNextProcessor.from_pretrained(model_path)
# Define image token
image_token = "<|reserved_special_token_4|>"
# Format the prompt
prompt = (
f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
f"You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
f"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
f"{image_token}\n{caption_hint}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
f"{caption}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
)
# Load the model
model = LlavaNextForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16, device_map="auto")
# Prepare inputs and generate output
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
answer_start = int(inputs["input_ids"].shape[-1])
output = model.generate(**inputs, max_new_tokens=512)
# Decode predictions
pred = processor.decode(output[0][answer_start:], skip_special_tokens=False)
print(f"## Synthesizer predictions:\n{pred}")
# Extract task triplets
task_triplet = get_task_triplet(pred)
print(f"## Synthesized Task triplet:\n{task_triplet}")
```
</details>
### 2. Advanced Usage: Convert Image-Caption Pairs into Visual Instructions at Scale
The following steps show how to convert your own data into visual instructions for post-training MLLMs.
We leverage vLLM to accelerate the synthesis process. On a single A100-80GB GPU, it takes about 12.5 hours to convert 100K image-caption pairs.
<details>
<summary> Click to expand </summary>
### 1) Setup
Install vLLM using `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source).
```bash
pip install vllm
```
Clone our code repository and navigate to the inference directory:
```bash
git clone https://github.com/bigai-ai/QA-Synthesizer.git
cd QA-Synthesizer/vllm_inference
SYNTHESIZER=AdaptLLM/visual-instruction-synthesizer
CONSISTENCY_CHECKER=meta-llama/Meta-Llama-3-8B # Language model for consistency checks
```
### 2) Prepare Your Image-Caption Pairs
Format your `image_caption_pairs` file to match the following structure (similar to ShareGPT), or you can use our [data_samples/image_caption_pairs.json](https://github.com/bigai-ai/QA-Synthesizer/blob/main/data_samples/image_caption_pairs.json) for a quick try.
```json
[
{
"images": ["image_xxx.jpg"],
"messages": [
{
"content": "<image>instruction",
"role": "user"
},
{
"content": "response",
"role": "assistant"
}
]
},
...
]
```
### 3) Run Synthesis
The following command generate task triplets using the synthesizer and apply consistency-based filtering to enhance data quality:
```bash
IMAGE_CAPTION='../data_samples/image_caption_pairs.json' # Path to image-caption pairs
IMAGE_FOLDER='../data_samples/images' # Path to the image folder
OUTPUT_DIR='../data_samples/' # Output directory for synthesized data
# Run synthesis with data parallelism; adjust CUDA devices as needed:
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_synthesis.sh ${SYNTHESIZER} ${CONSISTENCY_CHECKER} ${IMAGE_CAPTION} ${IMAGE_FOLDER} ${OUTPUT_DIR}
```
The synthesized output will be saved at:
```bash
${OUTPUT_DIR}/image_caption_and_synthetic_task.json
```
This output can be directly utilized for single-stage post-training with code repo like [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory).
</details>
## Citation
If you find our work helpful, please cite us.
AdaMLLM
```bibtex
@article{adamllm,
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
journal={arXiv preprint arXiv:2411.19930},
year={2024}
}
```
[Instruction Pre-Training](https://huggingface.co/papers/2406.14491) (EMNLP 2024)
```bibtex
@article{cheng2024instruction,
title={Instruction Pre-Training: Language Models are Supervised Multitask Learners},
author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu},
journal={arXiv preprint arXiv:2406.14491},
year={2024}
}
```
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024)
```bibtex
@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```